Appendix B from S. R. Hall et al., "Selective Predation and Productivity Jointly Drive Complex Behavior in Host-Parasite Systems"

(Am. Nat., vol. 165, no. 1, p. 70)

Key Assumptions and Bifurcations in the S-I-Predation Model

Table B1

Key assumptions in the *S-I*-predation model, their implications for the model structure, and justification from the *Daphnia*-parasite-fish system

Model assumptions	Implications for model	Biological justification			
Susceptible (S) birthrate is density dependent					
(through parameter c)	Susceptible population is self-regulated without predators and/or parasites	Density dependence of the birthrate is observed in many <i>Daphnia</i> systems			
Infected (I) individuals do not reproduce but					
do deplete resources	<i>I</i> is not included in reproduction term (<i>bS</i>) but is included in the density-dependence term $[1-c(S+I)]$	Has been documented for <i>Daphnia</i> - microparasite systems (Ebert et al. 2000)			
Parasite transmission is linear and depends on					
S-I contact; S and I are well mixed	Classical, "pseudo-mass action" βSI transmission term is used	Linearity is supported in <i>Daphnia-Pasteuria</i> system (Regoes et al. 2002)			
Predator density (C) changes much more					
slowly than S and I density	A parameter, not a variable, represents predator density	Generation time of fish greatly exceeds that of bluegill			
Once infected, recovery is not possible	Obviates separate equations tracking recovered and immune classes	Daphnia do not recover once infected (Ebert et al. 2000)			

Table B2

	1 . 6	•	1 0 1	1 . •	1 1	• . 1	•	1	C	1.1	1 .
HOUT	hiturootione	110	tho VI	prodution	modal	TT71th	1mn	licotione	tor	roculting	dunomico
1.0111	DITITICATIONS		1110 11-7-			WIIII		III. ALIONIS	1111	I C SHITTING	UVHAIIIICS.
I OGI	onarounomo			predation	mouti,	** 1011	IIIp.	nearronno	101	resulting	a finantico
				1						U	2

Type of bifurcation/cause	Implication for dynamics
Transcritical/a new, feasible equilibrium arises	Allee effects and alternative stable states emerge when a second boundary or a second interior equilibrium arises
Fold (saddle node)/two equilibria collide and destroy each other	Multiple equilibrial states occurring before fold are no longer possible after the fold
Hopf/sum of effects of S on dS/dt and I on dI/dt are positive	Switch from stable, damped oscillations to sustained cycles (stable limit cycles); a component of catastrophic extinctions
Homoclinic/limit cycle collides with a saddle	Quick, sudden jump from one dynamic state to another; can be catastrophic for the parasite (high selectivity) or both parasite and host (low selectivity/avoidance)