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Appendix 2. Equilibria, trophic indices, and stability of tri-trophic model with dynamic stoichiometry of plants. 

 

In this second Appendix, we detail a tri-trophic model in which variation in nutrient enrichment and traits of plants and 

herbivore can shape the plant’s nutrient content. The bi-trophic case has been considered before by Hall (2004). It is 

worth noting that, in this model, there are no freely available nutrients (i.e. R*=0). Also, we describe nutrients sequestered 

in plants (QP*), which is the total amount of nutrient per unit habitat. This quantity is not represented by its own 

equation, but is simply the product of nutrient content per unit carbon (Q*) times amount of carbon per unit habitat 

(P*). Sequestered nutrient provides useful information about the bi-trophic and tri-trophic systems, since it can 

correspond to the herbivore’s nutrient demands. Since most of the results for this model closely resemble those from the 

model with static stoichiometry of the producer (Appendix 1), we describe results more briefly here.  

 

Equilibria 

A herbivore can first invade and persist with the plant when nutrient supply (S) exceeds the herbivores (H)’s minimal 

sequestered nutrient requirement,  QP
H

* . The requirement is the smallest amount of nutrients locked in plant (P) tissues 

that can support herbivores. Once exceeded, a two-species equilibrium emerges: 
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where both nutrient content of plant and herbivore biomass increase with enrichment (Table B1). Plant biomass 

decreases with enrichment until a certain level: 
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after which point the P-H equilibrium switches to a carbon-limited region, where now: 
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In this portion of the plant-herbivore only equilibrium, plant biomass is fixed at the producer’s minimal carbon 

requirement, but herbivore biomass, nutrient quota, and sequestered nutrient increase with S (Table B1). 

Before the herbivore in the plant-herbivore only equilibrium becomes carbon-limited, it could also support a 

carnivore if nutrient enrichment exceeds: 
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or the minimal nutrient requirement of the herbivore plus the nutrients contained in the carnivores’s own minimal 

requirement for herbivores,  mC
e

C
a

C
. If satisfied, a new equilibrium emerges with a nutrient-limited herbivore: 
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which requires that the ratio of nutrient uptake rate (r) to herbivore attack rate (a) exceed the biomass of herbivores 

(H3,NL
*), or  r a >H

3,NL

* . At this equilibrium, herbivore biomass remains fixed at the carnivore’s minimal carbon 

requirement. Additionally, nutrient quota of plants remains fixed. Both carnivore and plant biomass increase with 

nutrient enrichment, as does the total amount of nutrient sequestered in plants (Q3,NL
* P3,NL

*; Eq. B10; Table B1).  

If the herbivore in the two-level system is carbon-limited, the carnivore can invade if: 
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which says that nutrient supply must exceed the nutrient sequestered in the carnivore’s minimal requirement for carbon 

in herbivores ( H3,CL

* ) plus the nutrient sequestered in producers at the herbivore’s minimal carbon requirement ( P2,CL

* ), 

given the nutrient quota of those producers in the three-level system ( Q 3,CL

* ). The tri-trophic interior equilibrium that 

contains these terms for carbon-limited herbivores ( H3,CL

* ) and quota ( Q 3,CL

* ) becomes : 
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Note that both herbivore biomass and nutrient quota do not differ from those values in tri-trophic case with a nutrient-

limited herbivore (Eq. B5a and B5b, respectively). Instead, biomass of carnivores and plants continues to increase with 

enrichment, but just at a different slope.  

Over a nutrient enrichment gradient, the carnivore can invade the plant-herbivore system via two scenarios. In 

the first, the herbivore is limited by nutrients and remains so with further enrichment. This occurs when nutrient 

content of the plant, Q3,NL
*, is relatively small: 
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(which is a condition that closely resembles the one for the static case, Eq. A4). The herbivore feeding on relatively 

nutrient-poor plants always stays nutrient-limited in this tri-trophic system because the threshold at which it would 

switch to carbon limitation,  
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occurs at a lower level than required for the carnivore to invade (Eq. B4). The other scenario involves a more nutrient rich 

plant (i.e. one with nutrient:carbon ratio that exceeds the right hand side of Eq. B8). In this case, the carnivore invades 

when the herbivore in the two-dimensional system is carbon-limited. That herbivore remains carbon-limited with 

further enrichment until a resource limitation threshold for herbivores in tri-trophic chains (Eq. B9) is crossed. After this 

point, the herbivore actually becomes nutrient-limited again. As with the static case, there is no scenario in which a 

herbivore is nutrient limited when the carnivore invades and then becomes carbon limited. 

As with the static stoichiometry model, it seems counter-intuitive at first glance that production of herbivores 

could should switch from carbon limitation to nutrient limitation with enrichment in the three species chain. To 

understand this result, one must appreciate that the minimal nutrient demands of herbivore in the presence of predators 

( QP
H,3

* ) increases from the minimal nutrient requirement without predators,  QP
H

*  in the two-species chain (Eq. B1a) 

to: 
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This requirement increases because of mortality imposed by the carnivore: the herbivore must eat more sequestered 

nutrient to compensate for this higher mortality rate. (A parallel phenomenon occurs for plants and their nutrient 

requirements when they are grazed; Grover 1997). Although nutrients sequestered in plants do increase with enrichment 

when the herbivore is carbon-limited, they do not increase steeply enough. Thus, eventually production of herbivores in 

the tri-trophic system becomes nutrient limited. 

 

Trophic indices 
One can calculate response of the trophic indices for plants and herbivores following the same methods used for the static 

stoichiometry case. That is, many of the responses of the indices to change in parameters can be calculated from the 

individual response of the numerator (biomass in the three-level system) and the response of the denominator (biomass 

in the two level system) to a change in a parameter and the quotient rule from calculus (i.e. Eq. A12). The results (Table 2, 

A1) closely match those for the static stoichiometry case. As with that first model, response of plant biomass in tri-



trophic chains with nutrient-limited herbivores (P3,NL
*) to increases in nutrient:carbon ratio of herbivores (qH) depends 

upon enrichment (S). Below a certain level of enrichment, 
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plant biomass decreases with qH; above this threshold, it increases (Table B1). As for the static stoichiometry model, this 

switch in sign of P3,NL
* affects response of the plant trophic index to qH when different resources limit herbivores in bi-

trophic and tri-trophic chains (Table 2). 

 

Stability 
Elsewhere, we already shown that bi-trophic system is always stable, regardless of the resource limiting herbivore growth 

(Hall 2004). For tri-trophic systems with carbon-limited herbivores, the Jacobian matrix for a carbon-limited herbivore 

(JCL) is: 

JCL=
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where we have dropped subscripts denoting trophic level and resource limitation status. Meanwhile, the Jacobian matrix 

for a nutrient-limited herbivore (JNL) is: 

JNL=
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Stability analysis of the three-dimensional models depends upon the three Routh-Hurwitz criteria A1 > 0, A3 > 0, and 

A1A2 – A3 > 0, where A1, A2, and A3 are the coefficients of the Jacobian matrix’ characteristic polynomial. In the Jacobian 

matrix for the carbon-limited herbivore (JCL), the first criterion (A1 > 0) is always met. The second criterion (A3 > 0) is 

always met (because  Q
* >-ea q

C
a

C
). The third criterion is met as long as: 
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which is met as long as the three-level is feasible. When herbivores are nutrient-limited, one can show that the model is 

stable based on the signs of the associated Jacobian matrix (JNL). The first Routh-Hurwitz criterion is met since J11 < 0, 

implying that A1 = –(J11 + J22) > 0. The second criterion is met since A3 = J11 J23 J32 > 0 always. The third criterion (A1 A2 – 

A3 > 0) is met since –J11 J22 (J11 + J22) + J22 J23 J32 > 0 always. Hence, the three-level food chain model with a nutrient or 

carbon limited herbivore is stable. 

 



 

Table B1. Signs of partial derivatives of equilibrial biomass of plants (Pj
*) and herbivores (Hj

*) derived from the model 

with dynamic stoichiometric of the producer, where “+” indicates increase in the equilibrium with an increase in the 

parameter, “–“ indicates a decrease in the equilibrium, and “0” indicates no change. Responses of nutrient quota (Q) are 

presented in the main text (Table 2). 

 

Resourcea Quantityb Nutrient supply, 

S 

Maximum 

efficiency, e 

Min. plant 

nutr:C, kQ 

Grazer nutr:C, qH 

Carbon P2
* 0 – 0 0 

 H2
* + + 0 0 

 P3
* + – – – 

 H3
* 0 0 0 0 

      

Nutrient P2
* – – – + 

 H2
* + + 0 – 

 P3
* + – – –,+ c 

 H3
* 0 0 0 0 

a “Carbon” means that carbon limits herbivores; “nutrient” indicates nutrient limitation. 
b Subscript refers to number of trophic levels (“2” for bi-level, “3” for tri-level). 
c This sign changes as nutrient enrichment crosses the particular threshold (Eq. B11).   

 


