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Abstract. Ecologists and epidemiologists worry that global warming will increase disease
prevalence. These fears arise because several direct and indirect mechanisms link warming to
disease, and because parasite outbreaks are increasing in many taxa. However, this outcome is
not a foregone conclusion, as physiological and community-interaction-based mechanisms
may inhibit epidemics at warmer temperatures. Here, we explore this thermal-community-
ecology-based mechanism, centering on fish predators that selectively prey upon Daphnia
infected with a fungal parasite. We used an interplay between a simple model built around this
system’s biology and laboratory experiments designed to parameterize the model. Through
this data–model interaction, we found that a given density of predators can inhibit epidemics
as temperatures rise when thermal physiology of the predator scales more steeply than that of
the host. This case is met in our fish–Daphnia–fungus system. Furthermore, the combination
of steeply scaling parasite physiology and predation-induced mortality can inhibit epidemics at
lower temperatures. This effect may terminate fungal epidemics of Daphnia as lakes cool in
autumn. Thus, predation and physiology could constrain epidemics to intermediate
temperatures (a pattern that we see in our system). More generally, these results accentuate
the possibility that warmer temperatures might actually enhance predator control of parasites.
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INTRODUCTION

Will an increasingly warmer world necessarily become

a sicker world? Unfortunately, mounting evidence

suggests that disease prevalence continues to increase

among many groups of plant and wildlife species, and

this increase likely ties directly and indirectly to global

warming (Harvell et al. 1999, 2002, Lafferty et al. 2004,

Ward and Lafferty 2004). Global warming links directly

with disease prevalence because increased temperatures

can accelerate the fitness of parasites, reduce recruitment

bottlenecks for parasites during winter, and weaken

hosts (Porter et al. 1989, Harvell et al. 2001, 2002,

Mitchell et al. 2005). Furthermore, warmer temperatures

may allow vectors of parasites to expand their range

(Martens et al. 1999, Anderson et al. 2004). Such range

expansion can indirectly introduce diseases to novel

habitats.

These doom-and-gloom scenarios do not necessarily

apply to all taxa or all situations, of course. Indeed,

warming does not necessarily increase fitness of all

parasites. For instance, virulence of parasites may not

change, may decrease, or may respond unimodally to

increasing temperatures (Stacey et al. 2003, Thomas and

Blanford 2003). These various responses stem, in part,

from the fact that vital rates of both hosts and parasites

ultimately scale unimodally along broad temperature

gradients (Huey and Stevenson 1979, Thomas and

Blanford 2003). More specifically, vital rates increase

with temperature until some optimum is reached; once

temperature exceeds this optimum, vital rates decline

gradually with increasing temperature for some taxa,

but rapidly for others. In some host–parasite systems, a

parasite’s optimum occurs at cooler temperatures than

the optimum of its host (e.g., fungus–grasshopper

systems [Carruthers et al. 1992, Blanford and Thomas

1999, Blanford et al. 2003]). In such instances, a host can

use warmer temperatures to help defeat its parasites

through behavioral modification of its thermal environ-

ment. However, one cannot take too much comfort

from these physiology- and behavior-based mechanisms

because warmer temperatures can also select for shifts in

temperature optima (Huey and Hertz 1984, Huey and

Kingsolver 1989, 1993, Bennett et al. 1992). The exact

evolutionary trajectory of host–parasite systems in a

warmer world may depend sensitively upon underlying

genetic correlation structures and interactions between

host genotypes, parasite genotypes, and the environment

(Blanford et al. 2003, Thomas and Blanford 2003,

Stacey et al. 2003, Mitchell et al. 2004a). Thus, longer-
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term response of the physiology of host–parasite systems

to global warming becomes difficult to predict.
Another major unknown variable has received con-

siderably less attention but might prove to become quite
important: how will other interactive but non-vector

species respond to warming? Other species can pro-
foundly shape the outcome of parasitism in host

populations, and predators provide an important
example. Predators can actually inhibit epidemics by
selectively culling sick hosts and/or by maintaining host

densities below levels required for parasites to persist
(Hudson et al. 1992, Packer et al. 2003, Lafferty 2004,

Ostfeld and Holt 2004, Duffy et al. 2005, Hall et al.
2005). The question thus becomes, will warmer temper-

atures enhance or hinder predator control of parasites?
If both their per-capita feeding rates (i.e., physiological

scaling with temperature [Kooijman 2003, Gillooly et al.
2001]) and density respond positively to temperature,

predators might help prevent disease outbreaks as
temperatures rise. Alternatively, if hotter regimes inhibit

predator physiology or recruitment, warming may
indirectly accelerate spread of disease by reducing or

eliminating a potentially important, indirect source of
parasite control.

Here, we consider these warming–food-web scenarios
using a Daphnia-host–fungal-parasite–fish-predator sys-

tem. This system is ideally suited for such questions
because the vital rates of Daphnia, their parasites, and

fish depend on temperature (Geller 1975, Mourelatos
and Lacroix 1990, Kooijman 1993, Gillooly et al. 2001,
Mitchell et al. 2004b, 2005). Additionally, fish selectively

prey upon parasitized Daphnia (Duffy et al. 2005).
Furthermore, the seasonal phenology of several para-

sites of Daphnia follows a similar, suggestive trajectory:
epidemics start as lakes or ponds cool from their peaks

in late summer or autumn but terminate as the habitat
becomes cold later in autumn (Bittner et al. 2002,

Mitchell et al. 2004a, Duffy et al. 2005, Cáceres et al.
2006). If coldness slows physiology of the parasite at

faster rates than it slows physiology of the host, cold
temperatures could inhibit epidemics. Warmer temper-

ature might also accelerate the inhibitory effect of
ectothermic predators on epidemics. Indeed, we argue

both points below by developing quantitative predic-
tions from a simple, relevant model.

GENERAL MODELING

Biology and equations

We have built our model around the biology of a

particular Daphnia-host–fungal-parasite system, but
many aspects of its biology are generic to other disease

systems. The host, Daphnia dentifera, is a key crustacean
zooplankton grazer that inhabits open waters of north-

temperate lakes (Tessier and Woodruff 2002). Its para-
site is the ascomycetous yeast Metschnikowia bicuspida-

ta. Reproduction of the Daphnia host depends upon host
density, but infection with Metschnikowia reduces

fecundity and survival of the host (Ebert et al. 2000;

M. A. Duffy and S. R. Hall in review). Transmission of

the parasite occurs horizontally as hosts encounter

spores of the fungus (Codreanu and Codreanu-Balcescu

1981). The fungus continues to multiply within an

infected host, eventually filling its body with spores until

the host dies, at which point spores are released into the

water column (Ebert and Weisser 1997; see Plate 1). The

host never recovers from infection (Ebert et al. 2000).

However, infection renders the ordinarily translucent

Daphnia more opaque, and hence more vulnerable to

visually oriented predators such as the bluegill sunfish

Lepomis macrochirus which consume infected hosts and

spores (Mittelbach 1981, Duffy et al. 2005).

We used a differential equation model to capture the

essence of this Daphnia–fungus–fish system. This system

represents change in density of susceptible hosts (S ),

infected hosts (I ), and spores (Z ) as the balance between

gains from production and losses from various sources

(see Table 1 for meanings of symbols and Appendix A

for more analytical details):

dS

dt
¼ ðbSþ bIIÞð1� c½Sþ I�Þ � dS� bSZ � fPS ð1aÞ

dI

dt
¼ bSZ � ðd þ vÞI � hfPI ð1bÞ

dZ

dt
¼ rðd þ vÞI � mZ: ð1cÞ

Production of susceptible hosts (Eq. 1a) is the maximum

birth rate of susceptible and infected hosts (at rates b

and bI, respectively, where 0 � bI , b) multiplied by a

term incorporating density dependence of reproduction

(at strength c). This density dependence arises because

both susceptible hosts and infected hosts consume

resources. Losses of susceptible hosts include back-

ground mortality (at rate d), transmission of the parasite

as susceptible hosts contact spores (at density Z and

transmission rate b), and consumption by predators at

density P who feed at rate f. Hosts become infected (Eq.

1b) as they contact spores, and infected hosts are lost

due to background and parasite-induced mortality (at

rate dþ v) and selective mortality from predators (where

h . 1 indicates that predators prefer infected to

susceptible hosts). Finally, spores (Eq. 1c) are produced

when infected hosts die (where r is the number of spores

released per dead host) but are lost by mortality or

sinking at rate m. We assume that spores contained in

consumed infected hosts are lost from the system, but we

are currently working to verify or update this assump-

tion.

Results

This model provides a simple rule determining when

the parasite can persist in a system at equilibrium (see

Appendix A for stability analyses). Parasite persistence

(i.e., I* . 0) requires that the density of susceptible hosts

without parasites (the boundary equilibrium, S�b ) ex-
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ceeds their density when coexisting with parasites (the

interior equilibrium, S�i ). The intuition behind this rule

is that S�i is the parasite’s minimal ‘‘resource’’ require-

ment, while S�b represents the resource supplied to an

invading parasite by the system. If resource available to

the parasite (S�b ) is lower than this minimum S�i , the

parasite cannot maintain itself. For this model, these

quantities are

S �b ¼
1

c

� �
1� d þ fP

b

� �
ð2aÞ

S �i ¼
m

rðd þ vÞ

� �
d þ vþ hfP

b

� �
: ð2bÞ

Thus factors that increase S�b and/or lower S�i make it

easier for the parasite to persist. As will become

important below, the boundary equilibrium S�b is a

negative function of predator density P, predator

feeding rate f, and density dependence c (as determined

by calculating the partial derivatives of the equilibria

with respect to each parameter). Meanwhile, the interior

equilibrium S�i is a positive function of predator density

and feeding rate. This phenomenon occurs indirectly

because predators consume sick hosts, thus decreasing

infection from the host’s other enemy (the parasite). The

quantity S�i is also a negative function of transmission

rate (b), spore production per host (r), and virulence

mortality (v), all of which increase the parasite’s fitness.

We assume that vital rates and quantities can become

temperature dependent using the Arrhenius function

(following an approach related to Gillooly et al. [2001]

and Savage et al. [2004]). It yields generalized rate k as a

function of temperature, T (Kooijman 1993):

kðTÞ ¼ kRexp TA

1

TR

� 1

T

� �� �
ð3Þ

where kR is the rate at a reference temperature, TA is a

scaling constant (called the Arrhenius temperature), and
TR is the reference temperature. With biologically

relevant parameters (Kooijman 1993), this function
accelerates as temperature warms (although at extremely

high temperatures, it does plateau at kR exp[TA/TR]
[Gillooly et al. 2001]). Thus, it represents the increasing

portion of the generalized unimodal response common
in thermal biology (Huey and Stevenson 1979). This
assumption seems reasonable for Daphnia because these

animals die at temperatures just past their thermal
optima (Kooijman 1993, Mitchell et al. 2004a). Addi-

tionally, vital rates of parasite and predator do not
necessarily scale with the host’s vital rates (Kooijman

1993, Mitchell et al. 2005). To incorporate this detail,
one can replace the Arrhenius temperature (TA) for

parasite and predator rates with qTA or qPTA,
respectively, where q and qP are the ratio of Arrhenius
temperatures of the enemies to that of the host (called

‘‘scaling factors’’ below). If these scaling factors become
greater than one, vital rates of the particular enemy scale

more steeply with temperature than do those of the host.
Once vital rates and quantities become functions of

temperature, the equilibrial population sizes of the host
with (S�i ) and without (S�b ) parasites can vary with

temperature (T ) and predator density (P). The direction
of this change depends specifically on which parameters

scale with temperature and whether vital rates of the
enemies scale similarly with those of the host. To start,

we consider a baseline case where the host traits of
maximal birth rate (b) and non-specific loss rates (d), the
parasite traits transmission rate (b), virulence mortality

(v), host fecundity (bI), and loss rates (m), and feeding
rate of the predator ( f ) all scale with temperature

according to the host’s physiology (i.e., q ¼ qP ¼ 1).
Meanwhile, strength of density dependence (c), spore

production per host (r), and predator selectivity (h) do

TABLE 1. Response variables and parameters in the host–parasite-spore–predator model.

Symbol Units Meaning Estimate (source)

I no./L density of infected hosts
S no./L density of susceptible hosts
Z no./L density of spores (sp.)
t no. days time
b d�1 maximal birth rate, susceptible hosts, at TR 0.4 (a)
bI d�1 maximal birth rate, infected hosts, at TR 0.21 (b)
c (no./L)�1 strength of density dependence on birth rates 1/20 (c)
d d�1 background mortality rate 0.05 (c)
m d�1 loss rate of spores 0.033
f d�1(no./L)�1 feeding rate of predators 200
P no./L density of predators 0–2 3 10�3

T 8C temperature 7–27
TA Arrhenius coefficient for the host 6400 (d)
TR 8C reference temperature 20
v d�1 virulence mortality 0.05 (b)
b d�1(no./L)�1 transmission rate at reference temperature (TR) 3 3 10�6 (b)
h selectivity of predators on infected hosts 9 (c)
q thermal scaling factor, parasite 2.7 (b)
qP thermal scaling factor, predator 1.75 (d)
r spores produced per host 6.4 3 104 (b)

Sources: a, Tessier and Woodruff (2002); b, this study; c, Duffy et al. (2005); d, Kooijman (1993).
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not vary with temperature. In this baseline case, neither

S�i nor S�b vary with temperature (Fig. 1A). This result

occurs mathematically because increases in parameters

with T in numerators of the equilibria (Eq. 2) are offset

by changes with temperature in parameters in their

denominators. Instead, S�b decreases while S�i increases

with increasing predator density (Fig. 1A).

The situation becomes more interesting if the vital

rates of the enemies scale differently than those of the

host (q 6¼ 1, qP 6¼ 1) and when other parameters become

FIG. 1. Equilibrial density of susceptible hosts without (S�b ) or with (S�i ) parasites become functions of temperature (T ) via
several mechanisms (see text for details). Vital rates of parasite and predator scale differently with temperature than those of the
host when scaling factors q 6¼ 1 (for parasites) and qP 6¼ 1 (for predators), respectively. (A) In the baseline case (q ¼ 1, qP ¼ 1),
neither S�b nor S�i changes with temperature; these quantities only decrease (S�b ) or increase (S�i ) as predation density (P) moves
from lower to higher levels (i.e., in direction of arrows). (B) Once the predator’s feeding rate ( f ) scales more steeply than the hosts’
(qP . 1), a given density of predators becomes more lethal to S�b but indirectly beneficial to S�i with warming. The opposite pattern
emerges when qP , 1. (C) If strength of density dependence (c) scales proportionately with temperature, S�b decreases as
temperature increases, but if the inverse of this strength scales proportionately with temperature, S�b increases. (D) Finally, if
parasite-dependent vital rates (illustrated with transmission rate b) scale more steeply with temperate than do the host’s vital rates
(q . 1), S�i decreases with temperature. Conversely, if q , 1, S�i increases with temperature.
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functions of temperature (T ). First consider the case

where feeding rate of the predator ( f ) scales differently

than the physiology of the host (qP 6¼ 1; Fig. 1B). In this

case, a given density of predators (P) becomes more

lethal (qP . 1) or less lethal (qP , 1) to susceptible hosts

at higher temperatures at the boundary equilibrium (S�b ).
Meanwhile, if they become more lethal at higher

temperature, predators become indirectly ‘‘helpful’’ to

susceptible hosts persisting with parasites (S�i ), but less
helpful when qP , 1. This indirect effect occurs

mathematically because S�i is a positive function of

feeding rate of the predator (Eq. 2). Biologically, higher

predation rates, driven by temperature, raise the

minimal resource requirement for the parasites to persist

because predators cull infected hosts, all else being

equal. In another case, the strength of density depend-

ence (c) may decrease with temperature if the inverse of c

increases with temperature (Fig. 1C). Although param-

eter c is not a rate per se, it does phenomenologically

represent dynamics of the host’s resource. Thus, temper-

ature dependence of c might emerge for Daphnia if the

physiology of its algal food resources also scales with T

(Alghren 1987, Kooijman 1993). In this case, S�b
increases with temperature, but S�i does not change

because it is not a function of temperature. Finally, if

parasite traits such as transmission rate (b) scale more or

less steeply with temperature than do the host’s vital

rates (q 6¼ 1), S�i decreases (q . 1) or increases (q , 1)

with temperature (Fig. 1D).

Once density of hosts at the boundary (S�b ) and

interior (S�i ) equilibria become functions of temperature,

successful persistence of parasites can also depend on

temperature. In fact, parasites may be inhibited at

warmer, cooler, or both warmer and cooler temper-

atures (Fig. 2). In the baseline case (Fig. 2A), neither S�b
nor S�i vary with temperature. Thus, as long as predator

density is not too high, parasites persist with hosts and

predators at any temperature (i.e., provided that S�b .

S�i , following the rule sketched above). However, if

feeding rate ( f ) of the predator increases more quickly

with temperature than the vital rates of the host (i.e., qP

. 1), an upper temperature threshold might emerge.

Once the system becomes warmer than this threshold, S�b
, S�i (Fig. 2B), so parasites cannot persist. A lower

temperature threshold arises if, instead, parasite traits

(such as transmission rate, b, and virulence mortality, v)

scale more steeply with temperature than do the host’s

vital rates (i.e., q . 1; Fig. 2C). This inhibition at cooler

conditions can occur with or without predators. How-

ever, if vital rates of predator and parasite both scale

FIG. 2. Temperature-dependent thresholds for parasite persistence emerge once susceptible host density without (S�b ) or with
(S�i ) parasites become functions of temperature. Parasites persist when S�b . S�i (white regions), but cannot otherwise (shaded
regions). Four different qualitative outcomes arise: (A) no temperature-dependent thresholds (because neither S�b nor S�i is a
function of T ); (B) an upper threshold emerges; (C) a lower threshold emerges; (D) both an upper and lower threshold emerge,
confining epidemics to intermediate temperature.
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steeply with temperature (qP . 1 and q . 1), then the

parasite might be able to persist at intermediate
temperatures only (Fig. 2D). In this last case, predation
effects create an upper threshold while parasite physi-

ology creates the lower one.
Thus, this modeling shows how temperature-depend-

ent physiology of hosts, parasites, and predators could
constrain epidemics to warmer, colder, or intermediate
temperatures. It may also explain the seasonal phenol-

ogy of epidemics in our study system (Duffy et al. 2005,
Cáceres et al. 2006). The next step for this problem
involves making more quantitative predictions using the

dynamical model (Eq. 1). To do so, one must collect
information about relevant parameters and physiolog-
ical scaling of vital rates of the three players. From

literature surveys, we already know that Daphnia’s
physiology scales with temperature (Arrhenius temper-
ature TA ¼ 6400) and that physiology of fishes scales

more steeply with temperature than does the Daphnia
host (predator scaling factor qP ; 1.75; Kooijman
1993). Therefore, we need to estimate the scaling factor

for vital rates of the fungal parasite.

PARAMATERIZATION

Methods

The experimental and statistical methods used to

estimate parasite parameters and scaling factors are
described in detail in Appendix B. Thus, those methods

are presented very briefly here. To estimate transmission
rate in the laboratory, we exposed five or six Daphnia to
a gradient of spores (25, 75, 150, and 500 spores/mL) at

four different temperatures (10, 15, 20, or 258C) for 20 h,

then incubated them at that particular temperature for

8–30 d before diagnosing them for infection. We then fit

a simplified version of the model (Eq. 1) to the

laboratory data and estimated the transmission rate

(b) and parasite scaling factor (q) using maximum

likelihood-based methods. We also conducted an

analogous field experiment in a stratified lake using

depth to create temperature gradients. In the laboratory,

we estimated the virulent effects of the parasite on host

fecundity and survival by noting offspring production of

infected animals incubated at three temperatures (15, 20,

or 258C) and days until death for each animal. Using

maximum-likelihood based methods again, we estimated

birth rate of infected hosts (bI), parasite-induced

morality rate (v), and parasite scaling factor (q) for

each of the two parameters. Finally, we estimated spore

production from dead hosts by tracking spore release

through time and fitting a non-linear time series model

to the data.

Results

In both laboratory and field experiments, likelihood

of infection varied greatly with temperature and spore

concentration (Fig. 3). The response of infectivity to

spore concentration follows the typical sigmoid dose

response (see also Regoes et al. 2003). Infectivity was

highest in the 258C treatments, intermediate and similar

among 208C and 158C treatments, and zero at 108C

treatments (Fig. 3A). This last result could arise through

two different mechanisms, a statistical one or a bio-

logical one. The statistical mechanism assumes that

parasite spores can infect hosts at 108C, but the

PLATE 1. The host zooplankton Daphnia dentifera infected with the fungus Metschnikowia bicuspidata. (Left) Two infected
hosts surround an uninfected host. Notice darker areas of infected Daphnia (body and head) where fungal spores have collected.
Photo credit: A. J. Tessier. (Right) Fungal spores collected within the body of an infected host, observed using a scanning electron
microscope. This view peers past the outer carapace of a Daphnia (lower left and upper right corners) to masses of cylindrically
shaped spores accumulated within the animal. Photo credit: Carol Flegler.
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probability of infection is so low that one is unlikely to

see an infection among only five or six animals per

beaker. This hypothesis suggests fitting the transmission

rate model (Eq. 4) to all data (i.e., all 10–258C

treatments). The biological mechanism assumes that

parasites spores become inactive at 108C. The particular

model we fit does not mathematically accommodate this

scenario (although more complicated models could).

Thus, we fit the transmission rate model again to only

15–258C treatments. Then, we looked for major differ-

ences in parameter estimates between the 10–258C and

15–258C situations. In the first experiment, both

scenarios yield similar parameter estimates (Appendix

B: Table B1). Particularly noteworthy was that the

parasite scaling factor (q) was greater than one in both

cases. However, this consistency among results was not

evident in the second experiment, where fits to all data

yielded q . 1, while fits to the 15–258C treatments

yielded q ’ 1 (but fit worse in terms of R2; see Table B1

[in Appendix B]). We used results from the first

experiment to quantitatively explore the S–I–Z model

with predation. We made this choice for several reasons:

conceptually, the q . 1 result provides a greater

challenge to explain lower temperature thresholds on

parasite persistence than does the simpler parasite-

inactivation mechanism; statistically, we found q . 1

FIG. 3. Prevalence of infection from two laboratory and one field experiment quantifying transmission rate. (A) Prevalence of
infection vs. spore density in the two lab experiments, incubated at four different temperatures. Lines represent predictions of an
Arrhenius-based epidemiological model generated with maximum-likelihood estimated parameters, fit with or without the 108C
treatment (see Appendix B for details). (B) Results from a field experiment in thermally stratified Lawrence Lake, where jugs
containing Daphnia and fungal spores were incubated at different depths that corresponded to different temperatures. Values are
means 6 SE.

SPENCER R. HALL ET AL.1690 Ecology, Vol. 87, No. 7



in three out of four cases and the R2 explained by the q
’ 1 result indicated worse fit.

Fits of maximal birth rate of infected hosts (bI) and

virulence (v) mortality to experimental data were more

straightforward. In both cases, the parasite scaling

factor (q) was approximately 1 (Fig. 4). This result

implies that these fitness effects of the fungal parasite

changed with temperature according to host physiology.

Additionally, infection reduced birth rate of the Daphnia

host by roughly one half. Although the accelerating

portion of the Arrhenius model fit both data sets well

(R2 . 0.72; see Table B1 [in Appendix B]), the data hint

that both maximal birth rate of infected hosts and

virulence mortality may decelerate as temperatures

become hotter (above 208C). Unfortunately, the Ar-

rhenius function cannot capture this possible deceler-

ation using reasonable parameter values.

With these parameter estimates and others from the

literature (Table 1), we used the model to make more

quantitative predictions considering the interplay be-

tween temperature (T ) and predator density (P). These

predictions become readily understood when plotted as

a persistence threshold curve (i.e., a map of where S�b ¼
S�i , determined numerically; Fig. 5A). This curve

compactly maps various threshold possibilities pre-

sented earlier (Fig. 2) in temperature–predator-density

parameter space. The ‘‘standard’’ case (parameters

following Table 1; density dependence and spore

production per host do not depend on temperature)

reveals the possibility that predation may constrain

epidemics to intermediate temperatures (Fig. 5B), but

the range of predator density to which this scenario

applies is limited. However, variation in assumptions

and parameter values can accentuate the temperature

dependence of these thresholds. For instance, once

either strength of density dependence (c) or spore

production per host (r) become functions of temper-

ature (illustrated as scaling with host thermal biology),

the threshold curve decreases more rapidly as temper-

atures decline (Fig. 5B). This dip means that lower

predator density can inhibit parasite persistence in

cooler conditions. In other examples, variation in spore

loss rate (m), transmission rate (b, possibly caused by

variation in resistance to infection among host popula-

tions), and strength of density dependence (c, possibly

driven by variations in ecosystem productivity) produce

qualitatively similar results. Changes in parameters

which decrease host abundance without parasites, S�b
(increasing strength of density dependence), or those

which decrease host abundance with parasites, S�i
(decreasing transmission rate or increasing loss rate of

spores), tip the threshold curves downward toward

colder temperatures (Fig. 5B). As a result, these changes

increase the possibility that a given level of predator

density will drive parasites extinct at lower temperature.

Conversely, parameter shifts which increase S�b or

decrease S�i tilt the threshold curves downward toward

increasing temperature. Therefore, in these cases,

inhibition of parasite persistence by a given predator

density is more likely at higher temperature.

In a final variation, we acknowledge that our host,

Daphnia dentifera, migrates vertically in thermally

stratified lakes. This species moves between warmer,

upper waters at night to cooler, lower waters during

daylight (Leibold and Tessier 1997). Meanwhile, bluegill

sunfish (the predators) remain in the warmer upper

waters throughout the entire day (Hall and Werner

1977). Thus, the host experiences a different temperature

(T) regime than the predator (at least while the lakes

remain thermally stratified). The qualitative implications

of this migration are represented simply here. Imagine

that a host spends half of the day at 108C (or 158C, both

are illustrated) and the other half at T8C, yet the fish

predator remains at T8C. Between T and 108C (or 158C),

the threshold curve tilts downward toward higher

temperature (Fig. 5B). Consequently, migration in-

creases chances that predator-driven extinction of para-

sites occurs at higher temperature.

DISCUSSION

The prospect of a warmer world becoming a sicker

world should worry ecologists. Indeed, as temperatures

climb, disease prevalence has apparently escalated in

FIG. 4. Experimental data and results of fits to a biological
model relating physiological rates to temperature (Appendix B):
(A) maximum birth rates of infected hosts and (B) mortality
rate of infected hosts, where the solid line is the Arrhenius-
function-based model plotted with MLE estimates and data
points are means 6 SE.
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many taxa (Harvell et al. 2002, Ward and Lafferty

2004). Warmer climates may facilitate disease spread

through a variety of direct and indirect mechanisms,

including acceleration of parasite fitness and range

expansion of vectors (Martens et al. 1999, Harvell et

al. 2002, Anderson et al. 2004). Although these and

other mechanisms will likely promote spread of disease,

other mechanisms may inhibit epidemics in other host–

parasite systems. Direct inhibitors include physiological

mismatches between the thermal optima of host and

parasite (Blanford et al. 2003). Warmer climates may

accentuate these mismatches to the host’s benefit (i.e.,

may help the host thermally defeat the parasite

[Carruthers et al. 1992, Blanford et al. 2003]). This

possibility has received some attention, particularly in

the applied entomology literature. Indirect inhibitors

may include increased control of epidemics by predators

that selectively cull parasitized hosts (Ostfeld and Holt

FIG. 5. Scenarios emerging from the temper-
ature-dependent model, parameterized for the
Daphnia–fungus–fish system with laboratory
experiments and literature-based data. (A) In a
generic example, a threshold line (solid) sepa-
rates combinations of temperature (T ) and
predator density (P) above which the parasite
cannot persist (S�b , S�i ), and below which it can
persist (S�b . S�i ). Predation may always exclude
parasites (high predator density), exclude them
at higher, lower, or both higher and lower
temperatures (intermediate predator density),
or never exclude them (low predator density),
depending on the shape of this curve. (B)
Parameterized examples of these thresholds,
where the dotted line in each panel represents
the threshold for the ‘‘standard’’ scenario (see
text for details; note that this ‘‘standard’’ case
differs from the ‘‘baseline’’ of Fig. 1). If strength
of density dependence (c) or spore production
per host (r) scales with host thermal biology, the
threshold bends down toward lower temper-
ature, accentuating predator-driven inhibition at
lower temperature. Variations in magnitude of
loss rate of spores (m), transmission rate (b), or
strength of density dependence change the shape
of these thresholds as well. These changes in
shape accentuate either lower or upper temper-
ature thresholds on parasite persistence. Finally,
Daphnia hosts may experience different average
temperatures during a whole day than predators
if the hosts migrate between a colder, lower layer
(108C or 158C) and an upper, warmer layer (T .

108C or T . 158C, respectively) and if fish
predators stay in the warmer, upper layer. This
migratory behavior tilts persistence thresholds
down toward higher temperature, making ex-
tinction of parasites at warmer temperatures
more likely.
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2004, Packer et al. 2003, Duffy et al. 2005). This

prospect has more unknown potential.

Here, we explore the possibility that predation can

inhibit epidemics at warmer temperatures. Can differ-

ences in thermal biology of host, parasite, and/or

predator accentuate the inhibitory effect of selective

predation on parasites? An affirmative answer could

arise if warmer temperatures only increase recruitment

of predators, of course. However, our study yields a

more subtle result. A given density of predators can

prevent persistence of parasites at higher temperatures if

the predator’s thermally biology scales more steeply with

temperature than that of the host (Kooijman 1993).

Such a situation seems more likely if the predator is a

fish or amphibian while the prey is an invertebrate

(Kooijman 1993, Gillooly et al. 2001). This result

emerges because, in warmer conditions, a given biomass

of predators becomes more lethal to the parasite’s

resource (uninfected hosts) as it tries to invade a host

population. Additionally, once the parasite invades, this

increased lethality on infected hosts increases the

minimal number of susceptible hosts needed by the

parasite to sustain the epidemic. Furthermore, preda-

tion-induced mortality, combined with thermal biology

of the parasite, can terminate epidemics at colder

temperatures, even if the parasite remains physiologi-

cally active at colder temperatures. This outcome

becomes more likely when vital rates of the parasite

(e.g., transmission) scale more steeply with temperature

than do those of the host (Gillooly et al. 2001, Harvell et

al. 2002, Mitchell et al. 2005), or if production of

infective spores of the parasite per host decreases or

density-dependence of the host increases with cooling

temperatures.

These qualitative outcomes yield insight into our

Daphnia–Metschnikowia–bluegill system. The seasonal

phenology of epidemics in this and related systems

(Bittner et al. 2002, Mitchell et al. 2004b, Duffy et al.

2005, Cáceres et al. 2006) suggests that epidemics begin as

systems start to cool at some point after peak warmness

in summer but end as systems become too cold. Can

selective predation on infected Daphnia by bluegill

sunfish constrain epidemics to intermediate temperatures

in our model system? By coupling a minimal host-

parasite-spore-predator model with parameter estimates

derived from laboratory experiments and extant liter-

ature (Kooijman 1993, Tessier and Woodruff 2002,

Duffy et al. 2005), we conclude that selective predation

could indeed facilitate upper and lower persistence limits

for the fungal parasite. This outcome seems more likely

with certain parameter combinations than others. In-

deed, fish predation becomes more likely to terminate

epidemics at lower temperatures when parasites are less

fit (e.g., lower transmission rate, higher loss rate of

spores, stronger density-dependent controls on host

reproduction, temperature-dependent spore production

by infected hosts). Conversely, a given predator density is

more likely to inhibit parasites at warmer temperatures

when parasites become more fit or when hosts vertically

migrate (Leibold and Tessier 1997). Thus, our results

provide more mechanistic insight into our earlier

proposal that predators can control epidemics in

Daphnia-parasite systems (Duffy et al. 2005, Hall et al.

2005). However, more exact predictions would depend

upon characteristics of the particular lake population

(e.g., strength of density dependence) and upon the

relative importance of other concurrent biological

processes (e.g., the dynamical consequences of the

evolution of resistance of host populations [M. Duffy

and L. Sivars-Becker, unpublished manuscript]).

Of course, quantitative inquiries like this one often

prompt as many questions as they answer. In this case,

iterations between model and data yielded at least two

important classes of uncertainty. The first class centers

more on the biological details of our particular system.

For instance, we do not know how the strength of

density dependence of host reproduction responds to

temperature in our lake systems. In fact, density

dependence may scale non-monotonically as temper-

ature, physiology, algal defenses, and resource limitation

of algae interact (Alhgren 1987, Kooijman 1993, Tessier

and Woodruff 2002). Additionally, predation intensity

experienced by Daphnia likely changes from summer to

autumn regardless of thermal biology because small

bluegill often switch resources from Daphnia to other

invertebrates during late summer (Hall and Werner

1977). Finally, we have abstracted the physical dynamics

of spores in the water column. Spores released by dead

hosts cannot propel themselves; thus, turbulence and

mixing must somehow connect spore to host (Cáceres et

al. 2006). Production of turbulence depends upon rate of

cooling of a water body and could constitute an

important factor starting these fungal epidemics.

A second class of uncertainty likely applies generically

to this and other host–parasite–predator systems. First,

how will predator recruitment respond to a warmer

climate? In our model, we varied predator density as a

parameter, not as a variable that responds to temper-

ature. Thus, we did not consider how temperature might

impact recruitment of predators. In the case of our fish

predators, warmer winter temperatures can enhance

survival of juveniles, but very warm temperatures in

summer could possibly increase mortality or alter timing

of reproduction during summer (Taylor et al. 1991,

Garvey et al. 1998, Santucci and Wahl 2003). Further-

more, enhanced recruitment of predators with warming

could outright eliminate the host (Moore and Folt 1993,

Tessier and Woodruff 2002, Hall et al. 2005). Second,

although we considered only smooth, slow changes in

temperature, within-season climatic variation may also

have pronounced effects on host–parasite dynamics

(e.g., Pascual et al. 2000, Zhou et al. 2004). Third,

increased warming can push host, parasite, or predator

beyond their thermal optima (Huey and Stevenson 1977,

Blanford et al. 2003), a possibility that we ignored here.
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Despite these sources of uncertainty, our results do

raise an important point: global warming does not

necessarily mean that disease prevalence will increase in

all systems. In fact, the interaction between warming

and disease may depend substantially upon the response

of the community in which host–parasite systems are

embedded. In particular, warmer temperatures can

enhance inhibition of epidemics by predators that

selectively prey upon infected hosts. This conclusion

seems likely for our Daphnia–fungus–fish system, and it

stems from interplay between natural history observa-

tions, dynamical models, and temperature-dependent

experiments designed to parameterize the models. One

could readily apply this three-part protocol to other

disease problems. Furthermore, we now emerge from

this interplay armed with both a clearer understanding

of critical uncertainties in our system’s natural history

and with a model template to which we can incorporate

thermal (climatic) variability in a physiologically mean-

ingful manner (Laakso et al. 2001). These fundamental

issues are critically important to this and other systems if

ecologists are to fully understand response of infectious

disease to climate change.
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APPENDIX A

Description of the stability of the equilibria produced by modeling the dynamics of susceptible hosts (S), infected hosts (I ), and
free-floating spores (Z ) (i.e., the S–I–Z model) with predators (P) (Ecological Archives E087-097-A1).

APPENDIX B

Details on the experiments used to parameterize the S–I–Zmodel with predation, along with statistical methods used to estimate
these parameters (Ecological Archives E087-097-0A2).
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