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Appendix A from S R. Hall, “Soichiometrically Explicit Competition
between Grazers Species Replacement, Coexisence, and Priority
Effects along Resource Supply Gradients’

(Am. Nat., val. 164, no. 2, p. 157)

Invason/Feagbility Criteria and Stability Analyss of Base M odd

In the base model, four equilibria emerge in scenarios with just one grazer: a trivial equilibrium, a plant-only
equilibrium, and equilibria with a single nutrient- or carbon-limited grazer. The plant can always invade the
trivial equilibrium,

A=0G =0 (A1)

(i.e., the invading plant has a positive per capita growth rate when rare at the trivial equilibrididAldt) >
0) if ug > Q After it invades, a plant-only equilibrium arises:

S
A = E G =0. (A2)
Without grazers (i.e., in a lower dimensional system with only eq. [1a] and [1c] and WBete0 ), this
equilibrium would be stable because of its negative eigenvahaes . At this plant-only equilibrium, producers

have incorporated all available ecosystem nutrients in their tissues, and producer nutrient content sits at its
minimum (i.e.,Q" = k, ). Herbivores can invade this stable, plant-only equilibrium (A2) when rare if
(1/G,)(dG,/dt) > O.

When herbivores invade this plant-only equilibrium, they will often be nutrient limited (umjessk, ). In the
unlikely event that the invading grazer is carbon limited (g k, ), the ecosystem must satisfy

diko
of

]

S> (A3)

for it to invade successfully. This threshold equals the feasibility criterion for the equilibrium with a single
carbon-limited grazer (eqg. [6]). In the more likely case, a nutrient-limited herbivore can invade the plant-only
equilibrium if S> QA;. Once the nutrient-limited herbivore invades, a feasibility criterion (derived fronAthe )
requires thaS must not exceed

a(gus + d)
S=——r (A4)

but the herbivore becomes carbon limited before nutrient supply reaches this criterion.

Local, linearized stability analysis of the two-dimension “linear” food chain model systems considered in cases
1 and 2 below is a straightforward endeavor (Gurney and Nisbet 1998). Each analysis follows similar logic.
First, imagine each case as a lower-dimension subset of the full model, where the plant coexists with only one

grazer (i.e., the other equals 0). Second, the substitukpes dA/dt FasddG, /dt are made. One then
calculates the Jacobian matri¥) (by taking the partial derivatives ¢, andF, with respect toA and G,.
Stability of J depends on the coefficients of its characteristic equation A\ + A, and the Routh-Hurwitz

criteria. These criteria require that = —(J,;, +J,,) >0 aAd=J,J,,+J,J,>0 (whafe are eigenvalues
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andJ,’s are the elements of matri¥). Thus, the trace o, evaluated at equilibrium, must be negative, while its
determinant must be positive.

Case 1. One Nutrient-Limited Grazer Only
At equilibrium with a single nutrient-limited herbivore (eqq. [4]) becomes:

dS d . (dg+equd — efS)(2dg + equl — ef S

ug
5 [F e eque?;ﬁ D (A5)
0 d——
O q O

where the subscrigthas been dropped on grazer parameters for clarity. NoteJthas a zeral,, element but a
negativel,, element (becausB> QA  for a feasible equilibrium). A feasible equilibrium guarantees negative
elements];, andJ,,. Thus, despite the relatively unusual architecture of its Jacobian matrix, this equilibrium is
stable because the tracg,(+ J,, ) is negative and the determifiaht)(is positive. Consequently,

stoichiometric feedbacks onto the nutrient-limited herbivore stabilize this system in the one-grazer subspace.

Case 2. One Carbon-Limited Grazer Only

At the carbon-limited, single-grazer equilibrium (eqq. [6])becomes

O
2kdusg  d

|| «fS-—que+C,) €

J =
e(fS+qug — C,) 0
0 29 0

4k,quB
(qus — fS+ C,)?

: (A6)

where

C, = \/(QUB - fS)2 +

4dk,quB (A7)
B

A feasible equilibrium yields negative elemendts andJ,, and positive element,,. As a result, a feasible
carbon-limited, single-grazer equilibrium is always stable in the one-grazer subspace because thg, tiace,
always negative and the determinant),,J,,, is always positive.

Case 3: Two-Grazer Equilibrium

The behavior and stability of the two-grazer competition model depend on five thresholds and the relative slopes
of the grazers’ impact vector§/qg; . As shown in the stability analysis below, the two-grazer equilibrium is stable
when each grazer more strongly impacts the resource limiting, impfyigg> f./q, . This case is considered

first. Along a gradient of nutrient supplhs), the minimal sequestered nutrient requireme®;( ) of the superior
nutrient competitorG, (criteriona in fig. 3), must be exceeded f@, to invade the plant-only equilibrium. As

nutrient supply increase§, becomes carbon limited (at a resource limitation threshald fig. 3A) when

Gf, 1
P Gl kQ). (A8)

1

S= QA +us

Then, the next threshold permits the superior carbon compedipto invade theG; — A*  equilibrium; this
interior invasion/feasibility criterion (thresholdin fig. 3A) becomes
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A
QA,

Kol (A9)

S= QAL+ uﬁ?—l(l
1

This threshold requires higher nutrient supply ti&'s resource limitation threshold (eq. [A8] beca@e>q, ),
but onceS meets it, the two-grazer equilibrium becomes feasiBleeventually displaces its competitor &s
increases further. Thus, an additional criterion

_ A
QA

S= A, + uﬁ%(l kQ) (A10)

places an upper resource-supply limit on grazer coexistence (critiiofig. 3A). When exceeded, this
threshold prohibitss,; from invading theG; — A* equilibrium. Whefs, displacess,, G, remains nutrient
limited. ThereforeG, becomes carbon limited at a second resource limitation threshold (crieerofig. 3A)
when S exceeds

1
1- q—kQ). (A11)

2

S= QA +ug
2

Notably, the invasion/feasibility criteria for the two-grazer equilibrium approached an asymptote. The lower and
upper asymptotes (from eqqg. [A9], [A10], respectively) are

o, A )
S=0A,+u—|1— Al2a
Q 2 fl ( QA*ZkQ ( )
—on oyl A
S=0QA,+u ) (1 oA, kQ) (Al2b)

(because ak - §—1 ). Thus, if nutrient supply exceeds the upper asymptote (eq. [Al12a]), the superior
nutrient competitor cannot competitively displace the superior carbon competitor, regardless of light supply. This
result could be relaxed if light extinction is explicitly modeled, perhaps following Huisman and Weissing’'s
(1995) approach.

Whenf,/q, < f,/q,, the two-grazer equilibrium is unstable (see stability analysis below) because each grazer
most strongly impacts the resource most limiting its competitor. These different ratios affect the progression of
thresholds pasB, 's boundary invasion and resource limitation thresholds. Most important, the interior/feasibility
thresholds ofG, (eq. [A9]) andG, (eq. [A10]) are encountered in reverse order as nutrient supply increases
(because nowg, /f, > q,/f, ). In the example presented (fi§). 3), the resource limitation threshold @, is
encountered between the resource limitation thresholdfaand the invasion/feasibility threshold &f,. This
result occurs because at the unstable two-grazer equilibrium, nutrient content of theQatamy;, ( ) exceeds
nutrient content of5, (q,). (Remember that the superior carbon competitor must be nutrient limited when
coexistence is feasible.) Between the two grazers’ resource limitation thresholds Gittwe6, exists alone
with the plant, depending on initial conditions.

To consider stability of the two-grazer equilibrium, the system’s Jacobian mdjriexpands to three
dimensions. With substitutiorl§ = dA/dt F, = dG,/dt (whe® is carbon limited), and~, = dG.,/dt (where
G, is nutrient limited),J becomes

* *

0 . 2 T
—uB( Al) A f, - UBqul(Al) —Af,— UBkQ%( Al)

QA; QA; QA;,
J=||efG; 0 0 (A13)
e f,0,
0 - G: J
0 o 2 33 0
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when evaluated at the two-grazer equilibrium (eqq. [7]) and where

ef, . A
Jyg = -, qul f,(QA, — S)+u6q(1 oA, ko)] (A14)

When the two-grazer equilibrium is feasiblg, is always negative if,/q, > f,/q, but is positive otherwise.
Whenf,/q, > f,/q,, the two-grazer equilibrium is stable. In this cabe,elements have the signs

+ 0 ol : (A15)
O - —
The characteristic polynomial & is \* + A\ + A, + A, whereN's are the eigenvalue#y, = — (J,;;+ Ji)

A, = 31 Jss— Jd o andA ;= J ,(J ,J .+ J d ). The Routh-Hurwitz criteria for stability of a three-dimension
system demand tha, >0 A,>0 , aldA,>A, . Given the signd @f this case, obvioushp, >0 always
becausel,, and J,; are both negative. It can be shown ti#gt>0 always as well because the term in
parentheses)(,J,;— J.zJ 5, ), iS positive assuming a feasible two-grazer equilibrium. Then, bdgassdways
positive, A; is guaranteed to be positive. With some manipulation, the third criterion becomes

_\]121‘-]33_ ‘]11‘--J §3+ J 11J 12] 27 —J 1‘; 21 32 (A16)

Because of the sign structure &fin this case, the left-hand side of this condition is always positive. Meanwhile,
the right-hand side is always negative. Thus, the equilibrium meets the third Routh-Hurwitz criterion, and a
stable two-grazer equilibrium arises.

Whenf,/q, < f,/q,,J;; becomes positive. Stability analysis with this change might typically become more
complex, but this analysis terminates at the first criterion becAused . In this case, crtgionegative

dali 334

The upper invasion/feasibility criterion (eq. [A10]) is always smaller than the right-hand side of stability criterion
A, because their difference (right-hand side of eq. [A17] minus the right-hand side of eq. [A10])

S<QA, +

uB(f,a, — F,a)[A{L — e ko) + &,QAY
e f, f,OA,

is always positive (because— ek, >0 , becaese: 1 kne 1 ,falod — f,/q, >0 ). Thus, fytogr
f,/q,, this two-grazer equilibrium is unstable (a saddle).

(A18)



