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Appendix A from S. R. Hall, “Stoichiometrically Explicit Competition
between Grazers: Species Replacement, Coexistence, and Priority
Effects along Resource Supply Gradients”
(Am. Nat., vol. 164, no. 2, p. 157)

Invasion/Feasibility Criteria and Stability Analysis of Base Model
In the base model, four equilibria emerge in scenarios with just one grazer: a trivial equilibrium, a plant-only
equilibrium, and equilibria with a single nutrient- or carbon-limited grazer. The plant can always invade the
trivial equilibrium,

∗ ∗A p 0, G p 0 (A1)j

(i.e., the invading plant has a positive per capita growth rate when rare at the trivial equilibrium, (1/A)(dA/dt) 1

) if . After it invades, a plant-only equilibrium arises:0 ub 1 0

S∗ ∗A p , G p 0. (A2)jkQ

Without grazers (i.e., in a lower dimensional system with only eq. [1a] and [1c] and where ), thisG p 0j

equilibrium would be stable because of its negative eigenvalue, . At this plant-only equilibrium, producers�2ub

have incorporated all available ecosystem nutrients in their tissues, and producer nutrient content sits at its
minimum (i.e., ). Herbivores can invade this stable, plant-only equilibrium (A2) when rare if∗Q p kQ

.(1/G )(dG /dt) 1 0j j

When herbivores invade this plant-only equilibrium, they will often be nutrient limited (unless ). In theq ≤ kj Q

unlikely event that the invading grazer is carbon limited (i.e., ), the ecosystem must satisfyq ≤ kj Q

d kj QS 1 (A3)
e fj j

for it to invade successfully. This threshold equals the feasibility criterion for the equilibrium with a single
carbon-limited grazer (eqq. [6]). In the more likely case, a nutrient-limited herbivore can invade the plant-only
equilibrium if . Once the nutrient-limited herbivore invades, a feasibility criterion (derived from the )∗ ∗S 1 QA Aj

requires thatS must not exceed

q e ub � d( )j j j

S p , (A4)
e fj j

but the herbivore becomes carbon limited before nutrient supply reaches this criterion.
Local, linearized stability analysis of the two-dimension “linear” food chain model systems considered in cases

1 and 2 below is a straightforward endeavor (Gurney and Nisbet 1998). Each analysis follows similar logic.
First, imagine each case as a lower-dimension subset of the full model, where the plant coexists with only one
grazer (i.e., the other equals 0). Second, the substitutions and are made. One thenF { dA/dt F { dG /dt1 2 j

calculates the Jacobian matrix (J) by taking the partial derivatives ofF1 andF2 with respect toA andGj.
Stability of J depends on the coefficients of its characteristic equation and the Routh-Hurwitz2l � A l � A1 2

criteria. These criteria require that and (wherel’s are eigenvaluesA p �(J � J ) 1 0 A p J J � J J 1 01 11 22 2 11 22 12 21
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andJik’s are the elements of matrixJ). Thus, the trace ofJ, evaluated at equilibrium, must be negative, while its
determinant must be positive.

Case 1: One Nutrient-Limited Grazer Only

At equilibrium with a single nutrient-limited herbivore (eqq. [4]),J becomes:

fS d (dq � equb � efS)(2dq � equb � efS) � � ub � 2q e e k qubQ
J p , (A5)

efS 0 d �
q 

where the subscriptj has been dropped on grazer parameters for clarity. Note thatJ has a zeroJ21 element but a
negativeJ22 element (because for a feasible equilibrium). A feasible equilibrium guarantees negative∗S 1 QAj

elementsJ11 andJ12. Thus, despite the relatively unusual architecture of its Jacobian matrix, this equilibrium is
stable because the trace ( ) is negative and the determinant (J11J22) is positive. Consequently,J � J11 12

stoichiometric feedbacks onto the nutrient-limited herbivore stabilize this system in the one-grazer subspace.

Case 2: One Carbon-Limited Grazer Only

At the carbon-limited, single-grazer equilibrium (eqq. [6]),J becomes

 
2k dub d 4k qubQ Q� � e �2 2[ ]e( fS � qub � C ) e (qub � fS � C )2 2

J p , (A6)
e( fS � qub � C ) 2 0

2q 

where

4dk qubQ2�C p (qub � fS) � . (A7)2 e

A feasible equilibrium yields negative elementsJ11 andJ12 and positive elementJ21. As a result, a feasible
carbon-limited, single-grazer equilibrium is always stable in the one-grazer subspace because the trace,J11, is
always negative and the determinant,�J12J21, is always positive.

Case 3: Two-Grazer Equilibrium

The behavior and stability of the two-grazer competition model depend on five thresholds and the relative slopes
of the grazers’ impact vectors, . As shown in the stability analysis below, the two-grazer equilibrium is stablef /qj j

when each grazer more strongly impacts the resource limiting, implying . This case is consideredf /q 1 f /q1 1 2 2

first. Along a gradient of nutrient supply (S), the minimal sequestered nutrient requirement ( ) of the superior∗QA1

nutrient competitor,G1 (criterion a in fig. 3), must be exceeded forG1 to invade the plant-only equilibrium. As
nutrient supply increases,G1 becomes carbon limited (at a resource limitation thresholdb in fig. 3A) when

q 11∗S p QA � ub 1 � k . (A8)1 Q( )f q1 1

Then, the next threshold permits the superior carbon competitor,G2, to invade the equilibrium; this∗ ∗G � A1

interior invasion/feasibility criterion (thresholdc in fig. 3A) becomes
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∗q A1 1∗S p QA � ub 1 � k . (A9)2 Q∗( )f QA1 2

This threshold requires higher nutrient supply thanG1’s resource limitation threshold (eq. [A8] because ),∗Q 1 q1

but onceS meets it, the two-grazer equilibrium becomes feasible.G1 eventually displaces its competitor asS
increases further. Thus, an additional criterion

∗q A2 1∗S p QA � ub 1 � k (A10)2 Q∗( )f QA2 2

places an upper resource-supply limit on grazer coexistence (criteriond in fig. 3A). When exceeded, this
threshold prohibitsG1 from invading the equilibrium. WhenG2 displacesG1, G2 remains nutrient∗ ∗G � A2

limited. Therefore,G2 becomes carbon limited at a second resource limitation threshold (criterione in fig. 3A)
whenS exceeds

q 12∗S p QA � ub 1 � k . (A11)2 Q( )f q2 2

Notably, the invasion/feasibility criteria for the two-grazer equilibrium approached an asymptote. The lower and
upper asymptotes (from eqq. [A9], [A10], respectively) are

∗q A1 1∗S p QA � u 1 � k (A12a)2 Q∗( )f QA1 2

∗q A2 1∗S p QA � u 1 � k (A12b)2 Q∗( )f QA2 2

(because as , ). Thus, if nutrient supply exceeds the upper asymptote (eq. [A12a]), the superiorL r � b r 1
nutrient competitor cannot competitively displace the superior carbon competitor, regardless of light supply. This
result could be relaxed if light extinction is explicitly modeled, perhaps following Huisman and Weissing’s
(1995) approach.

When , the two-grazer equilibrium is unstable (see stability analysis below) because each grazerf /q ! f /q1 1 2 2

most strongly impacts the resource most limiting its competitor. These different ratios affect the progression of
thresholds pastG1 ’s boundary invasion and resource limitation thresholds. Most important, the interior/feasibility
thresholds ofG2 (eq. [A9]) andG1 (eq. [A10]) are encountered in reverse order as nutrient supply increases
(because now ). In the example presented (fig. 3B, 3D), the resource limitation threshold forG2 isq /f 1 q /f1 1 2 2

encountered between the resource limitation threshold forG1 and the invasion/feasibility threshold ofG1. This
result occurs because at the unstable two-grazer equilibrium, nutrient content of the plant ( ) exceeds∗ ∗QA /A2 1

nutrient content ofG2 (q2). (Remember that the superior carbon competitor must be nutrient limited when
coexistence is feasible.) Between the two grazers’ resource limitation thresholds, eitherG1 or G2 exists alone
with the plant, depending on initial conditions.

To consider stability of the two-grazer equilibrium, the system’s Jacobian matrix (J) expands to three
dimensions. With substitutions , (whereG1 is carbon limited), and (whereF { dA/dt F { dG /dt F { dG /dt1 2 1 3 2

G2 is nutrient limited),J becomes

2 2
∗ ∗ ∗ A A A1 1 1∗ ∗�ub �A f � ubk q �A f � ubk q1 1 Q 1 1 2 Q 2∗ ∗ ∗( ) ( ) ( )QA QA QA2 2 2

∗J p e f G 0 0 (A13)1 1 1

e f q 2 2 1 ∗0 � G J2 33q 2
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when evaluated at the two-grazer equilibrium (eqq. [7]) and where

∗e f A2 2 1∗J p f (QA � S) � ubq 1 � k . (A14)33 1 2 1 Q∗[ ( )]f q � f q QA1 2 2 1 2

When the two-grazer equilibrium is feasible,J33 is always negative if but is positive otherwise.f /q 1 f /q1 1 2 2

When , the two-grazer equilibrium is stable. In this case,J’s elements have the signsf /q 1 f /q1 1 2 2

� � �
� 0 0 . (A15)[ ]
0 � �

The characteristic polynomial ofJ is , wherel’s are the eigenvalues, ,3 2l � A l � A l � A A p � (J � J )1 2 3 1 11 33

, and . The Routh-Hurwitz criteria for stability of a three-dimensionA p J J � J J A p J (J J � J J )2 11 33 12 21 3 21 12 33 13 32

system demand that , , and . Given the signs ofJ in this case, obviously alwaysA 1 0 A 1 0 A A 1 A A 1 01 3 1 2 3 1

becauseJ11 andJ33 are both negative. It can be shown that always as well because the term inA 1 03

parentheses, ( ), is positive assuming a feasible two-grazer equilibrium. Then, becauseJ21 is alwaysJ J � J J12 33 13 32

positive,A3 is guaranteed to be positive. With some manipulation, the third criterion becomes

2 2�J J � J J � J J J 1 �J J J . (A16)11 33 11 33 11 12 21 13 21 32

Because of the sign structure ofJ in this case, the left-hand side of this condition is always positive. Meanwhile,
the right-hand side is always negative. Thus, the equilibrium meets the third Routh-Hurwitz criterion, and a
stable two-grazer equilibrium arises.

When ,J33 becomes positive. Stability analysis with this change might typically become moref /q ! f /q1 1 2 2

complex, but this analysis terminates at the first criterion because . In this case, criterionA1 is negativeA ! 01

when

∗A q 1 q q1 1 2 1∗S ! QA � ub k � � � . (A17)2 Q∗{ [ ( ) ] }QA f e e f f2 1 2 2 2 2

The upper invasion/feasibility criterion (eq. [A10]) is always smaller than the right-hand side of stability criterion
A1 because their difference (right-hand side of eq. [A17] minus the right-hand side of eq. [A10])

∗ ∗ub( f q � f q ) A 1 � e k � e QA[ ( ) ]2 1 1 2 1 2 Q 2 2

(A18)∗e f f QA2 1 2 2

is always positive (because , because and , and ). Thus, when1 � e k 1 0 e ! 1 k ! 1 f /q � f /q 1 0 f /q !2 Q 2 Q 2 2 1 1 1 1

, this two-grazer equilibrium is unstable (a saddle).f /q2 2


