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Web Appendix 1: Details of model analysis: Equilibria and stability analysis

Meghan A. Duffy, Spencer R. Hall, Alan J. Tessier, and Marianne Huebner

Our model (Eqs. 3, 4) has three equilibria. The trivial
equilibrium (S* 5 0, I* 5 0) is unstable (a saddle) as long
as maximum per capita birth rate (b) of susceptibles (S) ex-
ceeds the sum of the two causes of mortality, predation (mS)
and death from other causes (n). The boundary equilibrium
(S . 0, I 5 0) is defined by* *b b

n 1 mSS* 5 K 1 2 (A1)b 1 2b

At this equilibrium, density of susceptibles is directly pro-
portional to carrying capacity (K) of the ecosystem. This
equilibrium is stable in a system without parasites because
of negative density dependence resulting from its logistic
form. More specifically, the effect of S on its own growth
rate (in a system without infecteds) is a negative function of
S, since

d(dS/dt) 2S
5 2(n 1 m ) 1 b 1 2 (A2)S 1 2dS K

is always negative as long as the boundary equilibrium is
feasible (i.e., b . n 1 ms). Consequently, the one-dimension
system has a negative eigenvalue, and, therefore, it is locally
stable. This (local asymptotic) stability is important because
it means that the invasion/feasibility criterion for the infected
class in this model (Eq. 7) is not influenced by cycling be-
havior, which can make successful invasion of the parasite
more difficult (Abrams 1999).

In an ecosystem with both susceptibles and parasites, a
stable coexistence equilibrium (S . 0, I . 0) is possible* *i i

when the parasite can successfully invade a S-only system.
We derived such conditions by solving 1/I (dI/dt) 5 0, eval-
uated at the S-only boundary equilibrium (Eq. A1), S . This*b
criterion, solved for mS, is found in Eq. 7. When the parasite
successfully invades this S-only system, an interior equilib-
rium subsequently arises:

n 1 v a mSS* 5 1i 1 2b 1 2 a b

b(S* 2 S*)b iI* 5 (A3)i b 1 bK

It is straightforward to show that this invasion criterion (Eq.
7) is equivalent to the feasibility criterion for the interior
equilibrium (i.e., I . 0 as long as Eq. 7 is met). At this*i
equilibrium, susceptible density does not increase with car-
rying capacity as at the boundary equilibrium. Instead, its
density is determined by the ratio of death rates of infecteds

(numerator) to the transmission rate of the parasite (b). Den-
sity of the infected class increases with carrying capacity
(since ]I /]K . 0) but at a decelerating rate.*i

It is straightforward to show that, when feasible, this in-
terior equilibrium is also (local asymptotically) stable. When
evaluated at this equilibrium (Eq. A3), the Jacobian matrix
(J) associated with our system (Eq. 3, 4) becomes

 b am n 1 v (b 1 bK)S*S i 2 2 21 2 bK 1 2 a bK KJ 5 (A4) 
bI* 0i 

J has negative elements J11 and J12 and positive element J21.
A two-dimensional matrix like J has a characteristic poly-
nomial l2 1 A1l 1 A2, where l are the eigenvalues. Ac-
cording to the well-known Routh-Hurwitz criteria (Kot
2001), the model is stable if A1 5 2J11 . 0, which is always
met, and if A2 5 2J12J21 . 0, which is also always met.
Therefore, for our system, a feasible interior equilibrium is
always stable.

In addition, the invasion/feasibility criterion (Eq. 7) is al-
ways a negative function of predator selectivity upon in-
fecteds (a), but it can be either concave up or down. This
criterion (Eq. 7) is always negative because its partial deriv-
ative with respect to a

]m̂ b[b(bK 2 n 2 v) 2 dbK]S 5 2 (A5)
2]a [bK 1 a(b 2 bK)]

is always negative when the interior equilibrium is feasible.
This negatively sloped relationship is concave down (]2mS/
]a2 , 0) when

bK
a , (A6)

bK 2 b

Given that a ranges from 0 to 1, Eq. A6 means that the
isoclines in Fig. 3 are concave down when bK . b, concave
up when bK , b (i.e., when the inequality is reversed in
Eq. A6), and linear when bK 5 b (i.e., when the denomi-
nator of Eq. A6 equals zero). Incidentally, there are other
inflections points for mS, but these points occur when the
interior equilibrium is not feasible.
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