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Materials and Methods 

Field sampling 

 We studied host evolution and ecologically driven variation in epidemic size in 

seven lake populations: Beaver Dam, Canvasback, Downing, Hale, Island, Midland, and 

Scott Lakes (Greene and Sullivan Counties, Indiana). Lakes were sampled, on average, 

every 8 days (range: 2-15 days). As in previous studies (15, 16, 21), we estimated 

infection prevalence visually on live hosts, using a dissecting microscope at 25-50x 

magnification. Infections are clearly visible through the transparent body of the host.  

 

Infection assays 

We assayed the infection risk of isofemale lines established from each of the 

seven populations. These assays were conducted following established protocols (13, 14, 

18). Individuals were raised under standard conditions for several generations in the lab 

prior to use in the assays; this protocol minimizes environmental effects. We assayed 9-

21 (mean: 15.4) isofemale lines per time period (pre-epidemic vs. post-epidemic) per 

lake. For logistical reasons, we used two temporal blocks to assay the isofemale lines 

from four lakes (Beaver Dam, Canvasback, Hale, and Midland).  

We used D. dentifera that were 6-9 days old for the assays. Six individuals from a 

given isofemale line were placed in a beaker containing 100 ml of a 50:50 mixture of 

filtered lake water and Artificial Daphnia Medium (ADaM; 28). There were eight 

replicate beakers per isofemale line; therefore, we exposed a total of 48 individuals per 

isofemale line to Metschnikowia. Animals were fed 10,000 cells ml-1 of the green algae 

Ankistrodesmus falcatus and exposed to 200 Metschnikowia spores ml-1 for 

approximately 24 hours, after which they were moved to beakers containing clean water. 

Animals were fed 20,000 cells ml-1 for the remainder of the experiment. Individuals were 

moved to clean beakers halfway through the experiment. Nine days after exposure, 
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individuals were examined for infections; by this time, infections are clearly visible, but 

hosts have not yet begun to die from virulent effects of the parasite (14).  

Infection risk in this system depends on the rate at which hosts encounter spores 

(driven by host feeding rate) and the ability of spores to infect after they are consumed 

(per-spore susceptibility). The infection assays cannot distinguish between these two 

mechanisms.  

 

Epidemiological modeling: methods 

 We used a trait-based epidemiological model parameterized for this system (see 

Table S1 for a complete description of parameters/variables). The model tracked changes 

through time of the density of host clones and free-living yeast spores and incorporated a 

parameterized tradeoff between transmission rate and fecundity among host clones (13). 

Since parasite-driven evolution of host populations is sensitive to tradeoff strength and 

shape (6, 7), it was essential to explore model predictions for this particular tradeoff. We 

varied productivity as a parameter governing density-dependence of birth rates (K), and 

we altered intensity of fish predation directly as a mortality rate (m), incorporating data 

on selectivity of predation on infected hosts (15). 

We followed the dynamics of clones with differing susceptibility whose dynamics 

are given by: 
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where Si indicates susceptible hosts of clones i, Ii indicates infected hosts of clone i, and Z 

indicates free-living infectious stages of Metschnikowia (“spores”). Susceptible hosts 

(Eq. 1.a) increase as a result of density-dependent births, where K modulates that density 
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dependence and serves as our measure of environmental productivity. Maximal birth rate, 

bi, is a function of transmission rate (susceptibility), βi, based on a tradeoff quantified for 

our D. dentifera-Metschnikowia system (13; see Table S1). Fecundity of infected hosts is 

reduced compared to uninfected hosts, governed by the proportion constant f (15, 29). 

Susceptible hosts die as a result of non-selective mortality (n) and fish predation (m). 

They also become infected via free-living spores, at clone-specific rate βi. Infected hosts 

(Eq. 1.b) increase following parasite transmission and are lost due to non-selective 

mortality (n) and fish predation (m). Fish prey selectively on infected hosts (15), as 

captured by θ (where θ > 1 indicates selectivity). Infected hosts also die from direct 

virulent effects of the parasite (14, 15, 30). Free-living infective stages (spores; Z; Eq. 

1.c) increase upon release from dead infected hosts. These dead, infected hosts contain σ 

spores; however, only a fraction of them (e) are released following predation. Spores are 

lost at rate d (e.g., due to sinking out of the water column) and due to uptake by 

susceptible Daphnia.  

 We simulated the dynamics of this host-parasite system to determine the infection 

prevalence and mean transmission rate (susceptibility) of the population. For the results 

presented in Figure 3, simulations were run with eleven clones with transmission rates 

evenly spaced between maximal (8.5 * 10-6 L spores -1 day-1) and minimal (0.5 *10-6 L 

spores -1 day-1) values. Given this initially uniform distribution among clones, mean 

transmission rate started at 4.5 * 10-6 L spores -1 day-1. We explored four different 

predation rates (m = 0.02, 0.05, 0.10 and 0.15 day-1) and a range of productivities, 

manipulated by changing K. The proportion infected was integrated over the simulation 

as a metric of epidemic size, and the average transmission rate (susceptibility) of the 

population at the end of the simulation (t = 200 days) was determined by weighting the 

transmission rate of each clone by its frequency. We focus on finite-time simulations to 

match our observations of the seasonal dynamics of susceptibility, but our qualitative 

results agree with an equilibrium based analysis of our model (not shown) and similar 
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ones (7). Our results were robust to changes in initial conditions (i.e., the initial 

distribution of the resistance trait among host clones and number of host clones in the 

population), length of the simulations, and the shape of the fecundity-resistance tradeoff 

that we assumed (linear, convex, or concave). 

 

Epidemiological modeling: Results 

This mathematical model supported our empirical findings. Our simulations 

confirmed that low predation intensity and high productivity fuel large epidemics that 

select for increased resistance (Fig. S1). Conversely, high predation and low productivity 

scenarios had small epidemics and experienced selection for increased susceptibility. 
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Table S1. 
Model parameters and variables.   
 
Parameter/ 
Variable 

Units Definition Value (Reference) 

bi day-1 Maximum birth rate of susceptible 
clone i 

5712.11βi + 0.241 
(13) 

d day-1 Loss rate of spores 0.05 
e -- Fraction of spores released by predation 0.5 (31) 
f -- Proportional fecundity of infected 

clones  
0.75 (15) 

Ii hosts L-1 Density of infected clone i -- 
K host L-1 Inverse of strength of density 

dependence of birth rate; a metric of 
productivity 

1-10 (14, 15) 

m day-1 Mortality rate from fish predation, 
susceptible hosts 

0-0.24(32) 

n day-1 Non-selective (background) mortality 
rate, susceptible hosts 

0.05 (15) 

Si hosts L-1 Density of susceptible hosts -- 
t day Time -- 
v day-1 Enhanced death rate due to infection 

(virulence) 
0.05 (14, 15) 

Z spores L-1 Density of parasite spores -- 
βi L spores -1 

day-1  
Transmission rate (susceptibility) of 
host clone i 

0.5-8.5*10-6 (14, 15, 
18) 

θ -- Selectivity of predation on infected 
hosts 

9 (15) 

σ spores 
host-1 

Density of spores per infected host 15,000 
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Table S2. 
Ecological context, epidemic size and evolutionary responses of hosts. This table contains the data used to make Figure 2. The 
“Evolutionary response” column indicates the results of the analyses presented in Figure 1; “NS” means no significant evolutionary 
change, “IS” indicates evolution of increased susceptibility, and “IR” indicates evolution of increased resistance. “Pre-epidemic mean” 
and “post-epidemic mean” columns indicated the average proportion infected for genotypes assayed for the lake. Total phosphorus 
(TP), total nitrogen (TN), adult size, and integrated prevalence were determined from the field survey. Integrated prevalence is the 
area under the time series of infection prevalence for each lake. Integrated prevalence is strongly correlated with maximum infection 
prevalence (r = 0.89, p = 0.008). 
 

Lake Evolutionary 
response 

Pre-
epidemic 

mean 

Post-
epidemic 

mean 

Change in 
susceptibility 
(pre – post) 

TP  
(µg P L-1) 

TN  
(µg N L-1) 

Adult 
size 

(mm) 

Integrated 
prevalence 

(prop. days) 
Beaver 
Dam 

NS 0.42 0.37 0.05 14.30 336.79 1.27 1.90 

Canvasback IS 0.238 0.302 -0.064 7.16 221.66 1.20 7.11 
Downing IS 0.469 0.537 -0.068 7.59 230.58 1.19 4.38 
Hale IS 0.344 0.484 -0.140 19.45 312.36 1.15 8.68 
Island IR 0.269 0.133 0.136 6.42 335.93 1.22 19.16 
Midland IR 0.26 0.218 0.042 26.92 435.29 1.30 20.13 
Scott IR 0.396 0.289 0.107 20.02 381.21 1.29 26.52 
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Figure S1. Simulation results showing effects of two ecological factors, productivity and 

predation intensity, on A) epidemic size (quantified as area under the infection 

prevalence curve) and B) susceptibility (quantified as mean transmission rate). 

Simulations were run for four different predation intensities (m = 0.02 (solid lines), 0.05 

(dot-dashed lines), 0.10 (dashed lines) and 0.15 (dotted lines) day-1). At high predation 

and low productivity, epidemics are relatively small and the population evolves higher 

susceptibility. As predation decreases and/or productivity increases, epidemics grow 

larger and the population evolves higher resistance. Initial mean susceptibility was 4.5 * 

10-6 L spore-1 day-1, as denoted by the horizontal gray line. This line demarks the border 

between the evolution of increased susceptibility (“susc.”, top) and the evolution of 

increased resistance (“res.”, bottom). 
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Figure S1. 
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