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Abstract. In nature, multiple parasite species infect multiple host species and are
influenced by processes operating across different spatial and temporal scales. Data sets
incorporating these complexities offer exciting opportunities to examine factors that shape
epidemics. We present a method using generalized linear mixed models in a multilevel
modeling framework to analyze patterns of variances and correlations in binomially
distributed prevalence data. We then apply it to a multi-lake, multiyear data set involving
two Daphnia host species and nine microparasite species. We found that the largest source of
variation in parasite prevalence was the species identities of host–parasite pairs, indicating
strong host–parasite specificity. Within host–parasite combinations, spatial variation (among
lakes) exceeded interannual variation. This suggests that factors promoting differences among
lakes (e.g., habitat characteristics and species interactions) better explain variation in peak
infection prevalence in our data set than factors driving differences among years (e.g., climate).
Prevalences of parasites in D. dentifera were more positively correlated than those for D.
pulicaria, suggesting that similar factors influenced epidemic size among parasites in D.
dentifera. Overall, this study demonstrates a method for parsing patterns of variation and
covariation in infection prevalence data, providing greater insight into the relative importance
of different underlying drivers of parasitism.

Key words: Daphnia dentifera; Daphnia pulicaria; generalized linear mixed model (GLMM); host–
parasite systems; Metschnikowia bicuspidata; Michigan, USA; Pasteuria ramosa; Polycaryum laeve;
Spirobacillus cienkowskii.

INTRODUCTION

Recent ecological studies have identified many possi-

ble drivers of infectious diseases. For example, climate

(Pascual et al. 2000, Thomson et al. 2006), physical

habitat characteristics (Cáceres et al. 2006, Johnson et

al. 2006b), community context (Ostfeld and Holt 2004,

Duffy et al. 2005), host species identity (LoGiudice et al.

2008, Hall et al. 2009), and parasite species identity

(Mitchell-Olds and Bradley 1996, Ebert et al. 2000) have

all been identified as potentially important processes

explaining patterns of variation in host–parasite sys-

tems. Yet, because these processes operate at many

spatial and temporal scales, it has proved difficult to

evaluate their relative importance or manipulate many

of them experimentally.

The fact that different drivers of infectious diseases

operate across different temporal and spatial scales,

however, also provides an opportunity: by studying

patterns of variation across scales, we can gain insight

into the relative importance of different processes that

influence the intensity of parasitism experienced by a

given host species. For example, if interannual variation

in climate strongly shapes disease, one could anticipate

large variation among years. However, if some host

species are more susceptible to parasitism than others,

then the greatest variation should occur among host

species.

While these analyses are likely to be informative, they

are not trivial. One challenge involves the distribution of

these kinds of parasitism data: prevalence data often are

distinctly nonnormally distributed. For example, given

the commonness of host–parasite specificity (Poulin

2007) and rarity of some parasites, multi-host and multi-

parasite data on infection prevalence will likely contain

many zeroes. Here we illustrate a method for analyzing

binomially distributed prevalence data and apply it to a

data set on parasitism in lake Daphnia populations. This

data set summarizes maximal infection prevalence of

nine different parasites in two Daphnia host species in 15

lakes from 2003 to 2007. We had previously studied

different drivers of parasite prevalence of two parasites

of D. dentifera, the bacterium Spirobacillus and espe-

cially the yeast Metschnikowia (e.g., physical habitat
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characteristics, selective vertebrate predation, and inver-

tebrate predation: Duffy et al. 2005, Cáceres et al. 2006,
2009, Hall et al. 2010). Here, we broaden the scope of

these previous studies by looking at a broader set of
parasites and an additional host and by using an

analysis that allows us to gain insight into the relative
importance of these different possible drivers of
parasitism.

METHODS

Study system

We studied Daphnia populations in 15 lakes in
southwestern Michigan, USA, near the Kellogg

Biological Station (Appendix A). The two focal host
species, Daphnia dentifera (formerly Daphnia galeata

mendotae and Daphnia rosea) and Daphnia pulicaria,
are common and often dominant grazers in stratified

lakes in North America. Daphnia pulicaria is more
common in spring and summer in these Michigan
lakes, whereas D. dentifera is more common in summer

and autumn (Hu and Tessier 1995, Cáceres and Tessier
2004). During our sampling period, D. pulicaria were

too rare in seven of these lakes to obtain good
infection data. Therefore, our analysis only includes

data on infections in D. pulicaria in the remaining
eight lakes.

We monitored infection prevalence of nine common
parasites in D. dentifera from 2003 to 2006 and in D.

pulicaria from 2004 to 2007, following the methods in
Cáceres et al. (2006; also see Appendix A). Briefly, on

each sampling date we collected 3–4 bottom-to-surface
samples of zooplankton from the deep basin of each

lake using a 153-lm Wisconsin net. On average, each
lake was sampled 9.6 times/year for D. dentifera

parasites and 5.2 times/year for D. pulicaria parasites.
On each sampling date, live samples were used to

determine the prevalence of infection in each lake by
scanning at least 400 Daphnia or until the entire sample

was searched. Because Daphnia are normally transpar-
ent, infections are relatively easy to identify by
observing hosts under a stereomicroscope at 25–503

magnification. Higher magnification (100–10003) was
used in cases in which the parasite identity was

ambiguous at lower levels of magnification. Our
estimates of parasite prevalence are likely to be

underestimates, since infections can only be detected
once symptoms become visually apparent. This bias,

which is a common problem in infectious disease
research (e.g., Holmstad et al. 2003, O’Meara et al.

2007), is likely to be consistent within individual
parasite species, but almost surely varies among

different parasite species. Thus, comparisons of infec-
tion prevalence across different parasite species should

be interpreted with this potential source of bias in
mind.

Six of the focal parasites observed have already been
described: the microsporidians Gurleya sp. and Larsso-

nia obtusa, the yeast Metschnikowia bicuspidata, the

chytrid Polycaryum laeve, and the bacteria Pasteuria

ramosa and Spirobacillus cienkowskii (see Plate 1)

(Green 1974, Ebert 2005, Johnson et al. 2006a,

Rodrigues et al. 2008). Two of the remaining parasites

have not been positively identified taxonomically; one

of these is a fungal brood parasite (‘‘brood’’; Hall et al.

2005b), while the other is an unidentified oomycete

(Green 1974, Wolinska et al. 2008). The final parasite is

a Burkholdaria-type bacterium (‘‘BB’’) that we are

currently working to describe.

Our first objective was to parse the sources of

variation among host species, parasite species, lake,

and year. We used the data from the eight lakes in which

both hosts were common and the three years (2004–

2006) in which we monitored infections in both host

species. Our second objective was to examine the pattern

of variation within each individual host–parasite pair-

ing, which allowed us to focus on the variation among

lakes and years. For D. dentifera, this analysis included

data from all 15 lakes and 2003–2006; for D. pulicaria,

this analysis included data from eight lakes and 2004–

2007.

Analyses

The primary challenge in analyzing these data is that

the maximum prevalences of infection values are not

normally distributed. Instead, they follow a binomial

process (1¼ infection, 0¼not) in which n individuals are

sampled at any one time point but only a fraction are

infected with a given parasite. Sampling according to a

binomial process introduces measurement error (error

that would disappear if the sample sizes n were very

large). This measurement error may confound the

partitioning of sources of ‘‘true’’ variation and reduce

or obscure correlations. Therefore, accounting for the

binomial sampling process should improve the analysis

of patterns of variances and correlations among parasite

infections among lakes, among years, and between host

species.

The approach we used takes advantage of the

statistical structure of generalized linear mixed models

(GLMMs). Mixed models in general, and GLMMs in

particular, are often used to estimate regression coeffi-

cients when covariation exists among samples, for

example, when repeated measurements are taken on

the same individual (Gelman and Hill 2007, McCulloch

et al. 2008); in these cases, the covariance is considered a

nuisance that must be extracted to correctly estimate

regression coefficients. However, GLMMs can also be

used to focus on the variance–covariance structure of

non-Gaussian (i.e., nonnormal) data. To illustrate this,

let yphlt denote the number of individual hosts of species

h infected by parasite species p in lake l during year t, so

for example y1hlt and y2hlt would give the number of

hosts of species h in lake–year l–t infected with parasites

1 and 2, respectively. A statistical model can be

formulated as follows:
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yphlt ; binomialðlphlt; nphltÞ

lphlt ¼ logit�1ðb0 þ ep þ eh þ el þ etÞ

ep ; Nð0;r2
pÞ

eh ; Nð0;r2
hÞ

el ; N ð0;r2
l Þ

et ; N ð0;r2
t Þ: ð1Þ

Here, yphlt is binomially distributed with lphlt giving the

probability (between 0 and 1) that an individual host is

infected (i.e., the prevalence of infection), and nphlt is the

number of hosts in a given parasite–host–lake–year

sample. The probability of a host being infected is itself

given by an inverse logit function of normally distrib-

uted random variables ep, eh, el, and et that each have

their own variances. Thus, this model treats the

probability lphlt in the binomial distribution as itself a

random variable. Because lphlt takes on values between

0 and 1, the sum b0þ epþ ehþ elþ et is logit-transformed

to bound its value accordingly; although a different

function than the logit could have been used, a logit
function is a natural and common choice for a binomial

distribution. This formulation is essentially the same as

the multilevel ANOVA presented by Gelman and Hill

(2007) and applied to ecological examples by Qian and

Shen (2007).

We have presented Eq. 1 in the style of a multilevel

model (Gelman and Hill 2007), although it would be

written equally well using GLMM formalism involving

fixed and random effects (McCulloch et al. 2008). The

key to the model formulation is that the probabilities of

being infected in the binomial distribution are assumed

to be given by Gaussian distributions that are trans-

formed through a logit link function; therefore, the error

terms ep, eh, el, and et represent random effects in the

GLMM. Analyses of the variance and correlation

patterns of prevalence are thus performed on the

underlying prevalences given by lphlt after accounting
for (extracting) the variance occurring in the binomial

sampling process. Variance and covariance patterns in

prevalence are then assessed in terms of the variances

and covariances in logit(lphlt). As we illustrate below,

this provides a flexible framework for analyzing

prevalence data.

Partitioning sources of variation.—Eq. 1 gives a model

of the simple case in which the variance in logit(lphlt)

can be divided simply into separate components for

parasites ( p), hosts (h), lakes (l ), and years (t). It can be

extended to include interactions among these factors.

For example, there are often differences among hosts in

their infection by different parasites (Poulin 2007). This

type of host-specific susceptibility to different parasites

can be included in the model given by Eq. 1 with an

additional normal random variable, eph, in the distribu-

tion of lphlt

lphlt ¼ logit�1ðb0 þ ep þ eh þ eph þ el þ etÞ

eph ; Nð0;r2
phÞ: ð2Þ

The random variable eph takes a different value for each

parasite–host pair. If the variance in eph is zero (r2
ph¼ 0),

then the variability among parasite–host pairs is given

solely by epþ eh with corresponding variance r2
pþr2

h. If,

in contrast, the variance in eph is not zero (r2
ph . 0), then

the variability among parasite–host pairs given by r2
p þ

r2
h þ r2

ph implies that some parasite species are

associated with some host species. This is conceptually

analogous to an interaction effect between parasite

species and host species that might be detected in fixed

effects, but here we place this interaction in the random

effects component of the GLMM.

There are numerous ways in which the GLMM could

be constructed to explore different ways of partitioning

variances. In addition to the partitioning illustrated

above, we investigated interactions between the other

random effects; for example, there could be an

interaction between the random effects for lakes and

years (elt). To adjudicate among different models that

partition variances in different ways, we use the Akaike

information criterion (AIC) to select the variance–

covariance structure that best fits the data. For an

explicit example of model construction, see the Supple-

ment. For all analyses we present in the main text, we

use the routine lmer( ) (Bates et al. 2008) in the R

programming language (R Core Development Team

2008; see Appendix E for code).

Finally, it may be useful to compare the variance

explained by a given model to the total variance in

prevalence, or equivalently, to compute the residual

variance in a model. For GLMMs, this involves some

technical issues and therefore is addressed in Appendix

B. This appendix presents a Bayesian (Markov chain

Monte Carlo [MCMC]) approach to estimating

GLMMs (Gelman and Hill 2007), which allows greater

flexibility in formulating models to partition the

variance in GLMMs than lmer( ). Appendix B also

shows that the performance of lmer( ) and MCMC when

applied with the same statistical model are similar, and

we use simulations to demonstrate the good perfor-

mance of lmer( ) for the data set we analyze here.

Correlations between species.—GLMMs can also be

used to estimate the correlation between infection levels

of different parasite species on the same host species or

between hosts for the same parasite species. These

correlations can help to identify similarities between

parasite species in drivers of parasite prevalence. To

illustrate this, we consider the question of whether two

parasite species have prevalences that are positively

correlated among lakes and years for the same host. The

Gaussian component of the GLMM could be formu-
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lated as

lplt ¼ logit�1ðb1x1 þ b2x2 þ epjltÞ

epjlt ; independent N ð0;RpÞ: ð3Þ

Here, b1 and b2 are the means of the first and second

parasite prevalences. The values of the categorical

variable x1 are one for data points from parasite species

1 and zero for data points from parasite species 2;

categorical variable x2 is defined similarly but with

values of zero given for parasite 1 and values of one

given for parasite 2. The random variable epjlt is

normally distributed, but to account for possible

correlations between parasites nested within each lake–

year (indicated by p j lt), the covariance matrix for epjlt is

FIG. 1. Maximum infection prevalence of nine parasite species in two hosts (Daphnia pulicaria and D. dentifera) in 15 lakes in
southwestern Michigan, USA. (A, B) Box plots of maximum infection prevalence of nine parasites in eight lakes from 2004 to 2006.
The data shown in this figure correspond to those used in the analysis presented in Table 1. Note that the y-axis scales differ
between the two panels. In Appendix D, we split the data for each parasite into a separate panel. The horizontal line in the center of
the boxes represents the median, while the box encompasses the central 50% of the values. The whiskers extend to 1.5 times the
interquartile range. Stars indicate observed values that fall between 1.5 and 3 times the interquartile range, while circles represent
observed values that are .3 times the interquartile range. (C) Yearly averages of maximum infection prevalence in D. pulicaria in
eight lakes from 2004 to 2007. (D) Yearly averages of maximum infection prevalence in D. dentifera in 15 lakes from 2003 to 2006.
In panels (C) and (D), each point represents the average maximum infection prevalence of a given parasite in a given year. Error
bars represent 6SE. Within each parasite species, points for different years are offset slightly along the x-axis. For all panels, the
parasites include: (1) the chytrid Polycaryum laeve, (2) a Burkholderia-type bacterium (‘‘BB’’), (3) a fungal brood parasite
(‘‘brood’’), (4) the microsporidians Gurleya sp. and (5) Larssonia obtusa, (6) the bacteria Spirobacillus cienkowskii and (7) Pasteuria
ramosa, (8) an oomycete, and (9) the yeastMetschnikowia bicuspidata. Cases in which a given host species was never observed to be
infected with a given parasite species (e.g., Metschnikowia in D. pulicaria) are indicated with a zero.
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Rp ¼
r2

1 qr1r2

qr1r2 r2
2

 !
: ð4Þ

The correlation between prevalences of the two parasite

species is given by the estimate of q. To assess the

statistical significance of the estimate of q, we used

parametric bootstrapping in which the fitted model was

used to simulate 1000 data sets, the GLMM was fit to

each simulation data set, and the resulting bootstrap

distribution of q was used to approximate the distribu-

tion of the estimator of q. We also asked whether

infections by the same parasite are correlated between

hosts in the same lake–years. For this analysis, the two

parasites attacking the same host in Eqs. 3 and 4 are

replaced by the two hosts being attacked by the same

parasite. If the resulting estimate of the correlation q is

positive, then lake–years in which the parasite has high

prevalence in D. pulicaria are also likely to have high

prevalence in D. dentifera.

RESULTS

We found substantial variation in maximal infection

prevalence (Fig. 1A, B; Appendix D). The parasites that

were most common in D. pulicaria, ‘‘BB’’ and Poly-

caryum, were never observed infecting D. dentifera.

Conversely, one of the most common D. dentifera

parasites, Metschnikowia, was never observed infecting

D. pulicaria; in addition, the brood parasite was

common in D. dentifera but rare in D. pulicaria.

The high variation in prevalence across host–parasite

pairings is supported by the statistical analysis, which

found that most variation in prevalence among parasite–

host–lake–years was contained in the host 3 parasite

interaction term r2
ph (Table 1). The best-supported

model does not include a host effect (indicating that

the hosts do not differ substantially in the maximal

infection prevalences they suffer), nor does it include a

parasite effect (indicating that maximal prevalences of

parasites do not differ significantly). Taken together,

these indicate that the large variance contained in the

host 3 parasite interaction term is caused by parasites

having different prevalences on different hosts (Fig.

TABLE 1. Variance estimates for best-fitting models.

Effect Variance

A) Full data set�
Parasite 3 host 11.5
Parasite 3 lake 1.76
Parasite 3 lake 3 year 0.829
Host 3 lake 3 year 0.666
Host 3 lake 0.516
Parasite 3 year 0.423

B) Data set using only parasites
that attack both hosts

Parasite 3 host 1.27
Host 1.26
Host 3 lake 3 year 1.03
Parasite 3 year 0.983
Parasite 3 lake 0.865
Parasite 3 lake 3 year 0.413

� Best-fitting model for the full data set (including both hosts
and all parasites) using a generalized linear model assuming
binomially distributed data.

PLATE 1. Cells of the bacterial parasite Spirobacillus cienkowskii filling the carapace of a Daphnia individual. All of the spiral-
shaped cells are the bacterial parasite. Photo credit: M. A. Duffy and Carol Flegler.
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1A, B). Given that some of the parasites were only

observed infecting one of the two host species, some of

this result is due to strict host specificity. When we

restrict our analysis to the five parasites that infect both

host species, we find that the host 3 parasite interaction

and host species identity explain the most variation

(Table 1).

Because the host 3 parasite interaction was so

dominant, it obscured our ability to look at other

sources of variation. We therefore repeated the analyses

separately for each individual host–parasite pairing.

This allowed us to analyze the variation at the lake and

year scales. For all host–parasite pairings, the greatest

variation was explained by lake, not year (Fig. 1C, D,

Fig. 2, Table 2; Appendix D). In most cases (e.g., for D.

dentifera host: brood, Metschnikowia, and Spirobacillus;

all parasites of D. pulicaria), the lake effect accounted

for considerably more variation than the year effect. In a

few instances, the year effect rivaled the lake effect (e.g.,

for D. dentifera: oomycete, Pasteuria).

Numerous drivers could act at the lake level. To gain

insight into whether parasite prevalence is influenced by

the same drivers, we looked for correlations among

parasites. We found that maximal infection prevalences

FIG. 2. Lake averages of maximum infection prevalence in (A) Daphnia pulicaria and (B) D. dentifera; each point represents the
maximum infection prevalence of a given parasite in a given host species in a given lake, averaged across years. Data for D.
pulicaria are from eight lakes from 2004 to 2007. Data for D. dentifera are from 15 lakes from 2003 to 2006; each point represents
the average maximum infection prevalence of a given parasite in a given lake. Error bars represent 6SE. Parasites are numbered as
in Fig. 1. Within each parasite species, points for different lakes are offset slightly along the x-axis to make the symbols more
apparent. In Appendix D, we split the data for each parasite into a separate panel, to make the differences among lakes more
apparent.
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of parasites of D. dentifera were generally positively

correlated (Table 3), suggesting similar drivers. In

general, there were weaker correlations among D.

pulicaria parasites (Table 4). Parasite prevalences were

not strongly correlated between the two host species

(Table 5).

To investigate how our GLMM approach differed

from a more conventional approach that does not

explicitly account for the binomial sampling of infected

individuals, we repeated these analyses by logit-trans-

forming the prevalence data and treating them as

normally distributed. As presented in Appendix C, the

‘‘standard’’ approach left more variance unexplained

than the GLMM approach and therefore was less likely

to identify patterns (specifically, the host 3 lake 3 year

and parasite3 lake3 year interactions in Table 1) in the

data. Also, the ‘‘standard’’ approach generally gave

lower estimates of correlations and was less likely to

identify correlations as significantly different from zero

(Table 3). Thus, the GLMM approach, by factoring out

measurement error associated with binomial sampling,

gives more informative results.

DISCUSSION

Many factors have been proposed as important

drivers of parasitism in natural populations. However,

the difficulties inherent in simultaneously studying

processes across multiple scales (space, time, and

species) have severely limited our understanding of the

relative importance of different factors. Here we present

a method for partitioning sources of variation in large-

scale data sets and apply it to a data set of multiple host

and parasite species. By identifying the dominant

sources of variation in the data, we obtain insight into

the relative importance of different drivers of parasitism.

We found that by far the greatest variance in

maximum prevalence in our multi-parasite–host–lake–

year data was contained in the host–parasite interaction.

This indicates substantial differences among the two

host species in the maximal infection prevalences of

different parasites. Indeed, several of the parasites were

only observed infecting one or the other of the two host

species (Fig. 1). This suggests strong species-level

differences in the susceptibility of hosts to different

parasites and/or species-level differences in the infectiv-

ity of different parasites on different hosts. Cases in

which closely related species differed strongly in their

susceptibility to a given parasite have been observed in

numerous systems previously (e.g., Sellaphora diatoms

and chytrids, Mann 1989, 1999; anther smuts in

Caryophyllacea, Le Gac et al. 2007), though, in other

systems (e.g., primates, Pedersen et al. 2005), such

strong specificity was found to be relatively rare. Our

data suggest that strong specificity is the dominant

TABLE 2. Variance among lakes and years for individual host–parasite pairings (data shown in
Figs. 1C, D and 2).

Host Parasite

Variance

Lake Year

Daphnia dentifera Brood 1.88 0.269
Oomycete 1.35 1.29
Larssonia 1.13 0.608
Metschnikowia 6.52 0.187
Pasteuria 1.22 1.07
Spirobacillus 0.950 0.0577

Daphnia pulicaria BB 3.48 0.0513
Brood 1.36 0.110
Oomycete 5.70 1.79
Gurleya 6.16 0.973
Polycaryum 2.35 0.0329
Spirobacillus 5.10 1.60

Note: ‘‘BB’’ stands for Burkholdaria-type bacterium.

TABLE 3. Correlations between parasites in Daphnia dentifera populations.

Parasite Brood Oomycete Larssonia Metschnikowia Pasteuria

Oomycete 0.220
Larssonia 0.307* �0.079
Metschnikowia 0.338 0.480� 0.507�
Pasteuria 0.492� �0.058 �0.068 0.368
Spirobacillus 0.302� 0.313* 0.064 0.487� 0.299*

Notes: Tests of the null hypothesis q¼ 0 were performed using parametric bootstrapping (1000
simulations). Note that the statistical significance of q does not necessarily correspond to its
magnitude; this is due to differences in prevalence among parasite species, with lower prevalence
giving less statistical power to reject the null hypothesis.
* P , 0.05; � P , 0.02.
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driver of patterns of parasitism in our Daphnia–parasite

system.

Looking within individual host–parasite pairings, we

found that there was always more variation among lakes

than among years in peak prevalence. This suggests that

factors influencing differences among lakes (such as

physical habitat characteristics and community context)

have more of an effect on parasitism than factors that

cause differences among years (such as climate). One

way in which physical habitat characteristics may

influence parasitism is via effects on free-living infective

stages (‘‘spores’’). Many of the Daphnia parasites are

known to produce spores (Ebert 2005, Johnson et al.

2006a), and physical habitat characteristics (such as

basin shape) can influence the ability of the spores to be

resuspended and remain in the water column (though

the strength of the effect may vary with spore size and

motility). In the Daphnia dentifera–Metschnikowia sys-

tem, we have previously found strong correlations

between lake basin shape and maximal infection

prevalence (Cáceres et al. 2006, Hall et al. 2010). This

may be due, in part, to effects of basin shape on currents

that drive the movement of particles (such as parasite

spores) from nearshore to offshore (Hall et al. 2010),

where they can be ingested by Daphnia.

Physical habitat characteristics also strongly influence

community context (Tessier and Woodruff 2002, Hall et

al. 2010), creating consistent differences among lakes in

the densities of predators including fish (Mittelbach

1984) and predatory invertebrates (Duffy et al. 2004,

Garcia and Mittelbach 2008, Cáceres et al. 2009).

Bluegill sunfish selectively prey upon infected Daphnia

(Spirobacillus, Duffy et al. 2005; Polycaryum, Johnson et

al. 2006b; Metschnikowia, Duffy and Hall 2008;

Pasteuria and oomycete, M. A. Duffy, unpublished

data), presumably because infections increase the

opacity of the normally transparent hosts. While we

have not measured the selectivity of fish predation on

the remaining four parasites, these also increase host

opacity, and, therefore, we expect that fish would also

prey selectively on Daphnia infected with those parasites.

Selective predation should have large effects on parasit-

ism (Packer et al. 2003, Ostfeld and Holt 2004, Hall et

al. 2005a), including on maximal infection prevalence

(Duffy and Hall 2008). Lakes with higher fish predation

would be expected to have lower maximal infection

prevalences. That, in turn, should lead to positive

correlations between maximal infection prevalences of
different parasites, since high levels of fish predation

should depress all parasites (albeit to varying degrees,

depending on the degree of selectivity). These positive

correlations should be stronger in D. dentifera than in D.

pulicaria, since D. dentifera live higher in the water
column and are subject to higher levels of fish predation

(Leibold and Tessier 1997). It is therefore interesting

that, in our data set, we generally observed positive

correlations between parasites of D. dentifera (Table 3).

Habitat characteristics have been found to be
important in a variety of other disease systems. For

example, a survey of parasitism in eels in Nova Scotia

found strong effects of pH on the abundance of different

parasites (Marcogliese and Cone 1996); in some cases,
this effect was thought to be mediated by effects of pH

on other members of the food web (specifically

mollusks). With Lyme disease, infection prevalence in

tick nymphs is strongly correlated with habitat size
(Allan et al. 2003). Specifically, larger habitats have

lower infection prevalences due to increased densities of

hosts that are less competent reservoirs of the Lyme

pathogen, Borrelia burgdorferi.

Our understanding of the relative importance of

different factors that influence parasitism in natural
populations has been limited by the difficulty of

performing manipulative experiments at sufficiently

large spatial scales and sufficiently long temporal scales.

Furthermore, it is even more difficult to conduct
experimental studies that encompass several potential

drivers. It is generally much more feasible (though

admittedly still quite labor intensive) to conduct

observational studies that encompass multiple scales.
However, these data are not easily analyzed, as they are

likely to be distinctly nonnormal. In this study, we

TABLE 4. Correlations between parasites in Daphnia pulicaria populations.

Parasite BB Brood Oomycete Gurleya Polycaryum

Brood 0.407*
Oomycete �0.146 �0.001
Gurleya 0.633� 0.530* �0.213
Polycaryum 0.175 �0.003 0.062 0.440
Spirobacillus �0.318 �0.098 �0.068 �0.270 0.029

Notes: Tests of the null hypothesis q¼ 0 were performed using parametric bootstrapping (1000
simulations). BB stands for Burkholdaria-type bacterium.
* P , 0.05; � P , 0.02.

TABLE 5. Correlations (q) of infection prevalence between
Daphnia dentifera and D. pulicaria for parasite species shared
by the two host species.

Parasite q

Brood 0.509�
Oomycete 0.043
Larssonia 0.006
Pasteuria 0.038
Spirobacillus �0.337

Note: Tests of the null hypothesis q¼0 were performed using
parametric bootstrapping (1000 simulations).

� P , 0.02.

November 2010 3329MULTI-SCALE PATTERNS OF PARASITISM



presented a method for analyzing these data and show

that doing so can quantitatively reveal patterns of

variation in parasitism, suggesting the most likely

drivers of infection prevalence. As disease ecology

matures and moves beyond studying a single factor in

a single host–parasite combination, this approach

permits a more general understanding of the processes

influencing parasitism in nature.
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